統(tǒng)計學的術語和簡介
統(tǒng)計學的術語和簡介
統(tǒng)計學是通過搜索、整理、分析、描述數據等手段,以達到推斷所測對象的本質,甚至預測對象未來的一門綜合性科學。以下是由學習啦小編整理關于什么是統(tǒng)計學的內容,希望大家喜歡!
統(tǒng)計學的起源
統(tǒng)計學的英文statistics最早源于現(xiàn)代拉丁文statisticum collegium(國會)、意大利文statista(國民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表對國家的資料進行分析的學問,也就是“研究國家的科學”。十九世紀,統(tǒng)計學在廣泛的數據以及資料中探究其意義,并且由John Sinclair引進到英語世界。
統(tǒng)計學是一門很古老的科學,一般認為其學理研究始于古希臘的亞里斯多德時代,迄今已有兩千三百多年的歷史。它起源于研究社會經濟問題,在兩千多年的發(fā)展過程中,統(tǒng)計學至少經歷了“城邦政情”、“政治算數”和“統(tǒng)計分析科學”三個發(fā)展階段。所謂“數理統(tǒng)計”并非獨立于統(tǒng)計學的新學科,確切地說,它是統(tǒng)計學在第三個發(fā)展階段所形成的所有收集和分析數據的新方法的一個綜合性名詞。概率論是數理統(tǒng)計方法的理論基礎,但是它不屬于統(tǒng)計學的范疇,而是屬于數學的范疇。
統(tǒng)計學的主要術語
統(tǒng)計學(statistics):收集、處理、分析、解釋數據并從數據中得出結論的科學。
描述統(tǒng)計(descriptive statistics):研究數據收集、處理和描述的統(tǒng)計學方法。
推斷統(tǒng)計(inferential statistics):研究如何利用樣本數據來推斷總體特征的統(tǒng)計學方法。
變量(variable):每次觀察會得到不同結果的某種特征。
分類變量(categorical variable):觀測結果表現(xiàn)為某種類別的變量。
順序變量(rank variable):又稱有序分類變量,觀測結果表現(xiàn)為某種有序類別的變量。
數值型變量(metric variable):又稱定量變量,觀測結果表現(xiàn)為數字的變量。
均值(mean):均值也就是平均數,有時特指算術平均數,這是相對其他方式計算的均值,求法是先將所有數字加起來,然后除以數字的個數,這是測量集中趨勢,或者說平均數的一種方法。
中位數(median):也就是選取中間的數,要找中位數,首先需要從小到大排序,排序后,再看中間的數字是什么。
眾數(mode):眾數也就是數據集中出現(xiàn)頻率最多的數字。
統(tǒng)計學的檢驗應用
統(tǒng)計學的中心問題就是如何根據樣本去探求有關總體的真實情況。因此,如何從一個總體中抽取一些元素組成樣本,什么樣的樣本最能代表總體,這直接影響著統(tǒng)計的準確性。如果抽取元素的方法是使總體中的元素成分不改,所觀測到的數值是互相獨立的隨機變量,并有著和總體一樣的分布,這樣的樣本是一個簡單的隨機樣本,它是總體的最好代表,而取得簡單隨機樣本的過程叫做簡單隨機取樣。
簡單隨機取樣就是重復進行同一隨機試驗,也就是指每次試驗都在同一組條件下進行,因而每次試驗得到什么結果,其可能程度都是固定不變的。對于有限總體,簡單隨機抽樣意味著每次抽出一個元素后,放還再抽,若不放還,總體的成分將有所改變,那么再抽時,出現(xiàn)各種結果的可能程度就相對地改變了。至于無限總體則沒有區(qū)分“放回”或“不放回”的必要。
除以上述原則外,另一方面,獲得樣本的具體方法能否保證觀察值是獨立的,這是問題的關鍵,因此,一樣本的隨機與否還取決于獲得樣本的具體方法。
在具體進行取樣時,必須根據研究目的的不同,選擇不同的取樣方法。
?、賳渭冸S機取樣法先把每個個體編號,然后用抽簽的方式從總體中抽取樣本。這種方法適用于個體間差異較小、所需抽選的個體數較少或個體的分布比較集中的研究對象。
②分區(qū)隨機取樣法將總體隨機地分成若干部分,然后再從每一部分隨機抽選若干個體組成樣本。這種抽樣法可以更有組織地進行,而且中選的個體在總體的分布比單純隨機取樣更均勻。
?、巯到y(tǒng)取樣法先有系統(tǒng)地將總體分成若干組,然后隨機地從第一組決定一個起點,如每組15個元素,決定從第一組的第13個元素選起,那么以后選定的單位即28,43,58,73等等。
?、芊謱尤臃ǜ鶕傮w特性的了解,把總體分成若干層次或類型組,然后從各個層次中按一定比例隨機抽選。這種方法的代表性好,但若層次劃分得不正確,也不能獲得有高度代表性的樣本。
看過“統(tǒng)計學的術語”的人還看了: