初中數(shù)學(xué)所有證明題歸納整理
初中數(shù)學(xué)所有證明題歸納整理
怎樣學(xué)好數(shù)學(xué),是剛步入初中的同學(xué)面臨的共同問題。特別是學(xué)好初中的證明題更是難上加難。為此,以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)所有證明題歸納,希望可以幫到你!
初中數(shù)學(xué)所有證明題歸納
一、證明兩線段相等
1.兩全等三角形中對應(yīng)邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或?qū)蔷€被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。
12.兩圓的內(nèi)(外)公切線的長相等。
13.等于同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應(yīng)角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內(nèi)錯角或平行四邊形的對角相等。
5.同角(或等角)的余角(或補(bǔ)角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應(yīng)角相等。
9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。
10.等于同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。
2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補(bǔ)角的平分線互相垂直。
5.一條直線垂直于平行線中的一條,則必垂直于另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直于弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直于同一直線的各直線平行。
2.同位角相等,內(nèi)錯角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行于第三邊。
5.梯形的中位線平行于兩底。
6.平行于同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應(yīng)成比例,則這條直線平行于第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等于短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。
初中數(shù)學(xué)證明題的思路
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯。
同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。
(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,可以結(jié)合結(jié)論和已知條件認(rèn)真的分析。
初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。
怎樣學(xué)好初中數(shù)學(xué)的幾何證明題
一、多看
主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個習(xí)慣,把課本當(dāng)成練習(xí)冊;也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預(yù)習(xí)閱讀。預(yù)習(xí)課文時,要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進(jìn)行簡單的復(fù)述。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預(yù)習(xí)時,我們只對所要學(xué)的教材內(nèi)容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預(yù)習(xí)時所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。
3.課后復(fù)習(xí)閱讀。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識系統(tǒng)化,加深和鞏固對課堂學(xué)習(xí)內(nèi)容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個單元后,應(yīng)全面閱讀課本,對本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識小結(jié),進(jìn)行查缺補(bǔ)漏。
二、多想
主要是指養(yǎng)成思考的習(xí)慣,學(xué)會思考的方法。獨立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力,同學(xué)們在學(xué)習(xí)時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識,歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂?。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。
四、多問
是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?
第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當(dāng)然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨立思考,問題仍得不到解決時,應(yīng)當(dāng)虛心向別人請教,向老師、同學(xué)、家長,向一切在這個問題上比自己強(qiáng)的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強(qiáng)者。
猜你喜歡: