初中數(shù)學(xué)代數(shù)教案
教案是教師對(duì)教學(xué)內(nèi)容,教學(xué)步驟,教學(xué)方法等進(jìn)行具體的安排和設(shè)計(jì)的一種實(shí)用性教學(xué)文書(shū),都要經(jīng)過(guò)周密考慮,精心設(shè)計(jì)而確定下來(lái),體現(xiàn)著很強(qiáng)的計(jì)劃性。下面是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)代數(shù)教案的資料,希望大家喜歡!
初中數(shù)學(xué)代數(shù)教案一
代數(shù)式
教學(xué)目標(biāo)
1、使學(xué)生認(rèn)識(shí)用字母表示數(shù)的意義,并能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
2、初步培養(yǎng)學(xué)生觀察、分析及抽象思維的能力;
3、通過(guò)本節(jié)課的教學(xué),教育學(xué)生為建設(shè)有中國(guó)特色社會(huì)主義而刻苦學(xué)習(xí)?
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用字母表示數(shù)的意義?
難點(diǎn):正確地說(shuō)出代數(shù)式所表示的數(shù)量關(guān)系??
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
五、教學(xué)方法
啟發(fā)式教學(xué)
六、教學(xué)過(guò)程
(一)、引言
數(shù)學(xué)是一門應(yīng)用非常廣泛的學(xué)科,是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基礎(chǔ)知識(shí)和基本工具?學(xué)好數(shù)學(xué)對(duì)于把我國(guó)建設(shè)成為有中國(guó)特色的社會(huì)主義強(qiáng)國(guó)具有十分重要的作用?
中學(xué)的數(shù)學(xué)課,是從學(xué)習(xí)代數(shù)開(kāi)始的?除了學(xué)習(xí)代數(shù)以外,同學(xué)們還將陸續(xù)地學(xué)習(xí)了平面幾何、立體幾何、解析幾何等內(nèi)容?
學(xué)習(xí)代數(shù)與學(xué)習(xí)其它學(xué)科一樣,首先要有明確的學(xué)習(xí)目的和正確的學(xué)習(xí)態(tài)度?沒(méi)有堅(jiān)持不懈努力,沒(méi)有頑強(qiáng)的克服困難的精神,是不可能學(xué)好代數(shù)的?
在開(kāi)始學(xué)習(xí)代數(shù)的時(shí)候,大家要注意代數(shù)與小學(xué)數(shù)學(xué)的聯(lián)系和區(qū)別,自覺(jué)地與算術(shù)對(duì)比:哪些和小學(xué)數(shù)學(xué)相同或類似,哪些有嚴(yán)格的區(qū)別,逐步明確代數(shù)的特點(diǎn)?
代數(shù)的一個(gè)重要特點(diǎn)是用字母表示數(shù),下面我們就從用字母表示數(shù)開(kāi)始初中代數(shù)的學(xué)習(xí)?
(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1、在小學(xué)我們?cè)鴮W(xué)過(guò)幾種運(yùn)算律?都是什么?如可用字母表示它們?
(通過(guò)啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運(yùn)算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a•b=b•a;
(3)加法結(jié)合律 (a+b)+c=a+(b+c);
(4)乘法結(jié)合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac?
指出:(1)“×”也可以寫(xiě)成“•”號(hào)或者省略不寫(xiě),但數(shù)與數(shù)之間相乘,一般仍用“×”;
(2)上面各種運(yùn)算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過(guò)去學(xué)過(guò)的一切數(shù)?
2、(投影)從甲地到乙地的路程是15千米,步行要3小時(shí),騎車要1小時(shí),乘汽車要0?25小時(shí),試問(wèn)步行、騎車、乘汽車的速度分別是多少?
3、若用s表示路程,t表示時(shí)間,ν表示速度,你能用s與t表示ν嗎?
4、(投影)一個(gè)正方形的邊長(zhǎng)是a厘米,則這個(gè)正方形的周長(zhǎng)是多少?面積是多少?
(用I厘米表示周長(zhǎng),則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)?
此時(shí),教師應(yīng)指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡(jiǎn)明的表示出來(lái);(2)在公式與中,用字母表示數(shù)也會(huì)給運(yùn)算帶來(lái)方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b, 以及a2等等都叫代數(shù)式?
那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容?三、講授新課
1、代數(shù)式
單獨(dú)的一個(gè)數(shù)字或單獨(dú)的一個(gè)字母以及用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式?
學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義?
2、舉例說(shuō)明
例1 填空:
(1)每包書(shū)有12冊(cè),n包書(shū)有__________冊(cè);
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長(zhǎng)是a厘米的正方體的體積是_____立方厘米;
(4)產(chǎn)量由m千克增長(zhǎng)10%,就達(dá)到_______千克?
(此例題用投影給出,學(xué)生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m?
例2 、說(shuō)出下列代數(shù)式的意義:
(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b) 2
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(3) 的意義是c除以ab的商; (4)a- 的意義是a減去 的差;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方?
說(shuō)明:(1)本題應(yīng)由教師示范來(lái)完成;
(2)對(duì)于代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不致引起誤會(huì)為出發(fā)點(diǎn)?如第(1)小題也可以說(shuō)成“a的2倍加上3”或“a的2倍與3的和”等等?
例3 、用代數(shù)式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積?
分析:用代數(shù)式表示用語(yǔ)言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號(hào)的使用;②字母與數(shù)字做乘積時(shí),習(xí)慣上數(shù)字要寫(xiě)在字母的前面?
解:(1) ; (2)(m-5n)2 (3)2x+y; (4)3tν3?
(四)、課堂練習(xí)
1、填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_(kāi)____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學(xué)生人數(shù)是x,其中女生占48%,則女生人數(shù)是____,男生人數(shù)是____?
2、說(shuō)出下列代數(shù)式的意義:(投影)
(1)2a-3c; (2) ; (3)ab+1; (4)a2-b2?
3、用代數(shù)式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和?
(五)、師生共同小結(jié)
首先,提出如下問(wèn)題:
1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2?用字母表示數(shù)的意義是什么?
3、什么叫代數(shù)式?
教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:①代數(shù)式實(shí)際上就是算式,字母像數(shù)字一樣也可以進(jìn)行運(yùn)算;②在代數(shù)式和運(yùn)算結(jié)果中,如有單位時(shí),要正確地使用括號(hào)?
七、練習(xí)設(shè)計(jì)
1、一個(gè)三角形的三條邊的長(zhǎng)分別的a,b,c,求這個(gè)三角形的周長(zhǎng)?
2、張強(qiáng)比王華大3歲,當(dāng)張強(qiáng)a歲時(shí),王華的年齡是多少?
3、飛機(jī)的速度是汽車的40倍,自行車的速度是汽車的 ,若汽車的速度是ν千米/時(shí),那么,飛機(jī)與自行車的速度各是多少?
4、a千克大米的售價(jià)是6元,1千克大米售多少元?
5、圓的半徑是R厘米,它的面積是多少?
6、用代數(shù)式表示:
(1)長(zhǎng)為a,寬為b米的長(zhǎng)方形的周長(zhǎng);
(2)寬為b米,長(zhǎng)是寬的2倍的長(zhǎng)方形的周長(zhǎng);
(3)長(zhǎng)是a米,寬是長(zhǎng)的 的長(zhǎng)方形的周長(zhǎng);
(4)寬為b米,長(zhǎng)比寬多2米的長(zhǎng)方形的周長(zhǎng)?
八、板書(shū)設(shè)計(jì)
初中數(shù)學(xué)代數(shù)教案二
數(shù)學(xué)列代數(shù)式教案設(shè)計(jì)
教學(xué)目標(biāo)
1、使學(xué)生能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語(yǔ)用代數(shù)式表示出來(lái);
2、初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):把實(shí)際問(wèn)題中的數(shù)量關(guān)系列成代數(shù)式?
難點(diǎn):正確理解題意,從中找出數(shù)量關(guān)系里的運(yùn)算順序并能準(zhǔn)確地寫(xiě)成代數(shù)式???
教學(xué)手段
現(xiàn)代課堂教學(xué)手段
教學(xué)方法
啟發(fā)式教學(xué)
教學(xué)過(guò)程
(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1、用代數(shù)式表示乙數(shù): (投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2、在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問(wèn)題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語(yǔ)言)列成代數(shù)式?本節(jié)課我們就來(lái)一起學(xué)習(xí)這個(gè)問(wèn)題?
(二)、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫(xiě)代數(shù)式以前需要把甲數(shù)具體設(shè)出來(lái),才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
最后,教師需指出:第4小題的答案也可寫(xiě)成x+16%x?
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來(lái),然后依條件寫(xiě)出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書(shū)完成)
此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說(shuō),用文字語(yǔ)言敘述的句子里應(yīng)特別注意其運(yùn)算順序?
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時(shí),可提出以下問(wèn)題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2?
(這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)?
例4 設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:
(1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的 ;
(3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的 的和?
分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4)a2+ a?
(通過(guò)本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力?)
例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個(gè)座位?
分析本題時(shí),可提出如下問(wèn)題:
(1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(3)通過(guò)上述問(wèn)題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個(gè); (2)( m)m個(gè)?
(三)、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
(四)、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;
(3)把用日常生活語(yǔ)言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握
練習(xí)設(shè)計(jì)
1、用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2、已知一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,
求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積?
板書(shū)設(shè)計(jì)
初中數(shù)學(xué)代數(shù)教案三
代數(shù)式的值
【學(xué)習(xí)目標(biāo)】
1、了解代數(shù)式的值的意義,能準(zhǔn)確地求出代數(shù)式的值;
2、通過(guò)代入法求值培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),提高運(yùn)算能力與創(chuàng)新設(shè)計(jì)能力;
3、通過(guò)字母取不同的值的變化來(lái)認(rèn)識(shí)世界發(fā)展變化及全面的觀點(diǎn).
【學(xué)習(xí)重點(diǎn)】能準(zhǔn)確地求出代數(shù)式的值.
【學(xué)習(xí)難點(diǎn)】能準(zhǔn)確地求出代數(shù)式的值.
【學(xué)習(xí)過(guò)程】
『?jiǎn)栴}情境、研討』
情境一:某公園依地勢(shì)擺若干個(gè)由大小相同的正方形構(gòu)成的花壇,并在各正方形花壇的頂點(diǎn)與各邊的中點(diǎn)布放盆花以營(yíng)造節(jié)日氣氛,
(1)填寫(xiě)下表
圖形編號(hào) (1) (2) (3) (4) …
盆花數(shù)
(2)若要求第100個(gè)圖案要用多少盆花,怎樣去解答?
情境二:
(1)看圖,如果小朋友的年齡為x歲,那么工人的年齡怎么表示?
(2)當(dāng)x=9時(shí),工人過(guò)了40歲了嗎?
(3)想一想:當(dāng)x=6時(shí)工人的年齡呢?
結(jié)論:根據(jù)問(wèn)題的需要,用具體數(shù)值代替代數(shù)式中的字母,按照代數(shù)式中的運(yùn)算關(guān)系,計(jì)算出的結(jié)果,就叫做這個(gè)代數(shù)式的值.
『例題講評(píng)』 P70/例1、 P/71議一議
『學(xué)生練習(xí)』 P71/練一練:1、2
補(bǔ)充:(1)當(dāng)x=1時(shí),求代數(shù)式4 -x+x2的值.
(2)當(dāng)a=2,b=-5時(shí),求下列代數(shù)式的值:①(a+b)(a-b) ②a2-b2.
(3)當(dāng)x+y=-2,xy=-4時(shí),求代數(shù)式 - 的值.
3.3 代數(shù)式的值(1)——隨堂練習(xí)
評(píng)價(jià)_______________
1.當(dāng)x=-1時(shí),代數(shù)式|5x+2|和1-3x的值分別為,則M、N之間的關(guān)系為( )
A.M>N B.M
2.當(dāng)a=-2時(shí),代數(shù)式-a2的值是( )
A.4 B.-2 C.-4 D.2
3.已知a-b=-2,則代數(shù)式3(a-b)2-b+a的值為( )
A.10 B.12 C.-10 D.-12
4.當(dāng)a=2,b=-3,c=-4時(shí),代數(shù)式b2-4ac的值為_(kāi)__________.
5.如果a+b=-3,ab=-4,代數(shù)式的 值為_(kāi)_________.
6.已知:x=-1,y=2,則(x-y)2-x3+x2y2 = .
7.已知:a= ,b= ,則a2-2ab+b2= .
8.當(dāng)m-n=5,mn= -2時(shí),則代數(shù)式(n-m)2-4mn= .
9.已知:x2+xy=1,xy-y2=-4,則x2+2xy-y2= .
10.若m2+3n-1的值為5,則代數(shù)式2m2+6n+1的值為 .
11.當(dāng)a=-2,b=3時(shí),求下列代數(shù)式的值:
?、?3(a-b) ⑵ 3a-3b ⑶ ( )2 ⑷
?、?(a-b)2 ⑹ a2-2ab+b2 ⑺ (a+1)(b+1) ⑻ ab+a+b+1
12.已知x,y互為相反數(shù),a,b互為倒數(shù),t的絕對(duì)值為2,求代數(shù)式(x+y)2003+(-ab)2004+t2的值.
13.已知 =2,求代數(shù)式 的值.
14.板書(shū)設(shè)計(jì)
猜你喜歡: