初二基礎(chǔ)差怎么學數(shù)學
不少同學初一數(shù)學成績都不怎么理想,因此對數(shù)學有恐懼心理,下面學習啦小編收集了一些關(guān)于初二數(shù)學學習方法,希望對你有幫助
初二數(shù)學成績差的原因
1、被動學習
許多同學進初中入后,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”。
2、學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、思維方式和學習方法不適應(yīng)數(shù)學學習要求
初二階段是數(shù)學學習分化最明顯的階段。一個重要原因是初中階段數(shù)學課程對學生抽象邏輯思維能力要求有了明顯提高。而初二學生正處于由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關(guān)鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思維能力發(fā)展快一些,有的則慢一些,因此表現(xiàn)出數(shù)學學習接受能力的差異。除了年齡特征因素以外,更重要的是教師沒有很好地根據(jù)學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發(fā)展,提高學習能力和學習適應(yīng)性。
初二數(shù)學學習方法1
一、熟記數(shù)學定理公式。
不少同學認為數(shù)學只要會計算會推理就可以了,其實不然,數(shù)學同樣也離不開背誦與記憶。數(shù)學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函數(shù)值”等,這些都是解題最基本的要素,如果這些都不能掌握,對學好數(shù)學是非常困難的。
二、理解“方程”的思想。
含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學習解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二和初三我們學習了解一元二次方程、二元二次方程組、簡單的三角方程;解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。
三、重視“數(shù)形結(jié)合”。
初中數(shù)學囊括代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,當你深入學習下去時會發(fā)現(xiàn)“數(shù)”與“形”密不可分。在初三,建立平面直角坐標系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學學習中,要重視“數(shù)形結(jié)合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習慣。
四、運用“對應(yīng)”方法。
我們在化簡求值計算中,將式子中有關(guān)字母或某個整體的值,對應(yīng)代入,直接算出原式的結(jié)果。我們到初三綜合會學習與圓有關(guān)的角,圓心角、圓周角、弦切角的數(shù)量關(guān)系必須“對應(yīng)”同一段弧才能成立。這就需要運用“對應(yīng)”的思想和方法來解題。初二、初三我們還看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)。
五、懂得自學的同學更接近成功。
自學能力越強的同學,悟性就越高。隨著年齡的增長,同學們的依賴性不斷減弱,而自學能力不斷增強。同學們學會運用自己所學過的已掌握的舊知識去預習新課,結(jié)合新課中的新規(guī)定去分析、理解新的學習內(nèi)容。由于數(shù)學知識的無矛盾性,你所學過的數(shù)學知識永遠都是有用的,都是正確的,數(shù)學的進一步學習只是加深拓廣而已。因此,以前的數(shù)學學得扎實,就為以后的進取奠定了基礎(chǔ),就不難自學新課。同時,在預習新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。
初二數(shù)學學習方法2
(1)加強學法指導,培養(yǎng)良好學習習慣反復使用的方法將變成人們的習慣行為。什么是良好的學習習慣?我向?qū)W生做了如下具體解釋,它包括制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面。
(2)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學生主動學習和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
(3)課前自學是學生上好新課,取得較好學習效果的基礎(chǔ)。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習主動權(quán)。自學不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(4)上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。“學然后知不足”,課前自學過的同學上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
(5)及時復習是高效率學習的重要一環(huán),通過反復閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由“懂”到“會”。
(6)獨立作業(yè)是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。
(7)解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實在解決不了的要請教老師和同學,并要經(jīng)常把易錯的地方拿出來復習強化,作適當?shù)闹貜托跃毩?,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
(8)系統(tǒng)小結(jié)是學生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復習的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系。以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學知識由“活”到“悟”。
猜你感興趣: