高考數(shù)學的復習重點及方法介紹
高考數(shù)學的復習重點及方法介紹
高考臨近,數(shù)學復習的重點就好像永遠都沒結束那樣,一直有新的知識點蹦出來。學習要有方法,數(shù)學也是一樣,系統(tǒng)的學習,能讓你更全面更系統(tǒng)的掌握知識點。下面由學習啦小編為大家提供關于高考數(shù)學的復習重點及方法介紹,希望對大家有幫助!
高考數(shù)學復習重點及方法一、時間安排
1:第一階段為重點知識的強化與鞏固階段,時間為3月1日—3月27日。
2:第二階段是對于綜合題型的解題方法與解題能力的訓練,時間為3月28日—4月16日。
高考數(shù)學復習重點及方法二、專題復習重點
根據(jù)高考對知識點的考察我們可以歸類為七大模塊,并且針對每一個模塊,新東方一對一胡凱麗老師為同學們一一詳解:
專題一:函數(shù)與不等式,以函數(shù)為主線,不等式和函數(shù)綜合題型是考點
函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性,奇偶性,周期性,對稱性。這些性質(zhì)通常會綜合起來一起考察,并且有時會考察具體函數(shù)的這些性質(zhì),有時會考察抽象函數(shù)的這些性質(zhì)。
一元二次函數(shù):一元二次函數(shù)是貫穿中學階段的一大函數(shù),初中階段主要對它的一些基礎性質(zhì)進行了了解,高中階段更多的是將它與導數(shù)進行銜接,根據(jù)拋物線的開口方向,與x軸的交點位置,進而討論與定義域在x軸上的擺放順序,這樣可以判斷導數(shù)的正負,最終達到求出單調(diào)區(qū)間的目的,求出極值及最值。
不等式:這一類問題常常出現(xiàn)在恒成立,或存在性問題中,其實質(zhì)是求函數(shù)的最值。當然關于不等式的解法,均值不等式,這些不等式的基礎知識點需掌握,還有一類較難的綜合性問題為不等式與數(shù)列的結合問題,掌握幾種不等式的放縮技巧是非常必要的。
專題二:數(shù)列。以等差等比數(shù)列為載體,考察等差等比數(shù)列的通項公式,求和公式,通項公式和求和公式的關系,求通項公式的幾種常用方法,求前n項和的幾種常用方法,這些知識點需要掌握。
專題三:三角函數(shù),平面向量,解三角形。三角函數(shù)是每年必考的知識點,難度較小,選擇,填空,解答題中都有涉及,有時候考察三角函數(shù)的公式之間的互相轉化,進而求單調(diào)區(qū)間或值域;有時候考察三角函數(shù)與解三角形,向量的綜合性問題,當然正弦,余弦定理是很好的工具。向量可以很好得實現(xiàn)數(shù)與形的轉化,是一個很重要的知識銜接點,它還可以和數(shù)學的一大難點解析幾何整合。
專題四:立體幾何。立體幾何中,三視圖是每年必考點,主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考察建立空間直角坐標系,通過向量這一手段求空間距離,線面角,二面角等。
另外,需要掌握棱錐,棱柱的性質(zhì),在棱錐中,著重掌握三棱錐,四棱錐,棱柱中,應該掌握三棱柱,長方體??臻g直線與平面的位置關系應以證明垂直為重點,當然??疾斓姆椒殚g接證明。
專題五:解析幾何。直線與圓錐曲線的位置關系,動點軌跡的探討,求定值,定點,最值這些為近年來考的熱點問題。解析幾何是考生所公認的難點,它的難點不是對題目無思路,不是不知道如何化解所給已知條件,難點在于如何巧妙地破解已知條件,如何巧妙地將復雜的運算量進行化簡。當然這里邊包含了一些常用方法,常用技巧,需要學生去記憶,體會。
專題六:概率統(tǒng)計,算法,復數(shù)。算發(fā)與復數(shù)一般會出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計問題著重考察學生的閱讀能力和獲取信息的能力,與實際生活關系密切,學生需學會能有效得提取信息,翻譯信息。做到這一點時,題目也就不攻自破了。
專題七:極坐標與參數(shù)方程,幾何證明。這部分所考察的題目比較簡單,主要出現(xiàn)在選擇,填空題中,學生需要熟記公式。
以上就是北京新東方中小學一對一胡凱麗老師為同學們列舉的二輪復習中應該注意的??贾R點。
高考數(shù)學復習重點及方法三、考試技能的培養(yǎng)
二輪復習中需要訓練的一個非常重要的技能:解題速度。高考不僅是對數(shù)學知識的考察,而且還是對學生綜合能力的考察,綜合能力中解題速度能力尤為重要,學生應進行嚴格限時訓練,在規(guī)定的時間內(nèi)做規(guī)定的題量,有意識地訓練,在保證題目正確率的前提下,提升做題速度,從而在高考中取勝。