2023年高考真題及答案數(shù)學(xué)
2023年高考真題及答案數(shù)學(xué)(上海卷)
高考結(jié)束后,考生們相互之間都會(huì)對(duì)答案、估分,參照高考試題和答案解析來(lái)認(rèn)真分析自己的分?jǐn)?shù),所以知道上海的高考各科試題和答案非常重要,下面小編為大家?guī)?lái)2023年高考真題及答案數(shù)學(xué),希望對(duì)您有所幫助!
2023年高考真題及答案數(shù)學(xué) (上海卷)
溫馨提示:查看更多更全高考試卷真題,可下載全文查看或微信搜索公眾號(hào)【5068教學(xué)資料】,關(guān)注后在對(duì)話框回復(fù)【高考真題】即可免費(fèi)獲取。
高考數(shù)學(xué)常用答題技巧參考
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
高考數(shù)學(xué)解題技巧
沉著應(yīng)戰(zhàn),確保旗開(kāi)得勝,以利振奮精神
良好的開(kāi)端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開(kāi)得勝”的快意
“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開(kāi),這叫外松。
提高解選擇題的速度、填空題的準(zhǔn)確度
12個(gè)選擇題,若能把握得好,容易的一分鐘一題,難題也不超過(guò)五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準(zhǔn)、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過(guò)程,因此要力求“完整、嚴(yán)密”。
高中數(shù)學(xué)做題技巧
通過(guò)一個(gè)既有的模型,數(shù)學(xué)結(jié)論,物理實(shí)驗(yàn),物理現(xiàn)象,通過(guò)列舉簡(jiǎn)化,或者給出相關(guān)信息,來(lái)達(dá)到可以用教材知識(shí)思考的程度,有時(shí)候干脆直接出成理想實(shí)驗(yàn)題目或者資料類題目,這類題目往往突出的是細(xì)節(jié),因?yàn)樵乇姸唷?/p>
解題過(guò)程中卡在某一過(guò)渡環(huán)節(jié)上是常見(jiàn)的,這時(shí)可以先承認(rèn)中間結(jié)論,往后推,看能否得到結(jié)論。若題目有兩問(wèn),第(1)問(wèn)想不出來(lái),可把第(1)問(wèn)當(dāng)作“已知”,先做第(2)問(wèn),跳一步解答。對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展.順向推有困難就逆推,直接證有困難就反證。
“以退求進(jìn)”是一個(gè)重要的解題策略,對(duì)于一個(gè)較一般的問(wèn)題,如果一時(shí)不能解決所提出的問(wèn)題,那么可以從一般退到特殊,從抽象退到具體,從復(fù)雜退到簡(jiǎn)單,從整體退到部分,從參變量退到常量,從較強(qiáng)的結(jié)論退到較弱的結(jié)論??傊说揭粋€(gè)能夠解決的問(wèn)題,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。