2017呼市中考數(shù)學(xué)模擬試卷答案
學(xué)生在準(zhǔn)備中考數(shù)學(xué)的過(guò)程中需要掌握數(shù)學(xué)模擬試題并多去練習(xí),這樣才能更好提升,以下是小編精心整理的2017呼市中考數(shù)學(xué)模擬試題答案,希望能幫到大家!
2017呼市中考數(shù)學(xué)模擬試題
一、選擇題(本大題共10個(gè)小題,每小題3分,共30分)
1.下列四個(gè)數(shù)中,比﹣1小的數(shù)是( )
A.﹣2 B.0 C.﹣ D.
2.民間剪紙是中國(guó)古老的傳統(tǒng)民間藝術(shù),它歷史悠久,風(fēng)格獨(dú)特,深受國(guó)內(nèi)外人士所喜愛,下列剪紙作品中,是軸對(duì)稱圖形的為( )
A. B. C. D.
3.下列運(yùn)算錯(cuò)誤的是( )
A.(﹣a3)2=a6 B.a2+3a2=4a2 C.2a3•3a2=6a5 D.3a3÷2a=a2
4.在下面的四個(gè)幾何體中,它們各自的主視圖與左視圖可能相同的是( )
A. B. C. D.
5.高速路上因趕時(shí)間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來(lái)直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機(jī)測(cè)試了6個(gè)小轎車的車速情況記錄如下:
車序號(hào) 1 2 3 4 5 6
車速(千米/時(shí)) 100 95 106 100 120 100
則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時(shí))分別是( )
A.100,95 B.100,100 C.102,100 D.100,103
6.“五•一”小長(zhǎng)假,小穎和小梅兩家計(jì)劃從“北京天安門”“三亞南山”“內(nèi)蒙古大草原”三個(gè)景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質(zhì)地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來(lái)確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是( )
A. B. C. D.
7.,四邊形ABCD為⊙O的內(nèi)接四邊形,E是BC延長(zhǎng)線上的一點(diǎn),已知∠BOD=100°,則∠DCE的度數(shù)為( )
A.40° B.60° C.50° D.80°
8.不等式組 的解集在數(shù)軸上表示正確的是( )
A. B. C. D.
9.所示是一次函數(shù)y=kx+b在直角坐標(biāo)系中的圖象,通過(guò)觀察圖象我們就可以得到方程kx+b=0的解為x=﹣1,這一求解過(guò)程主要體現(xiàn)的數(shù)學(xué)思想是( )
A.數(shù)形結(jié)合 B.分類討論 C.類比 D.公理化
10.,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E,F(xiàn)同時(shí)由A,C兩點(diǎn)出發(fā),分別沿AB,CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過(guò)t秒△DEF為等邊三角形,則t的值為( )
A.1 B. C. D.
二、填空題(本大題共5個(gè)小題,每小題3分,共15分)
11.分解因式:a3﹣ab2= .
12.,AB∥CD,∠DCE=118°,∠AEC的角平分線EF與GF相交于點(diǎn)F,∠BGF=132°,則∠F的度數(shù)是 .
13.“折竹抵地”問(wèn)題源自《九章算術(shù)》中,即:今有竹高一丈,末折抵地,去本三尺,問(wèn)折者高幾何?意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn),則折斷后的竹子高度為 尺.
14.,在平面直角坐標(biāo)系中,▱ABCD的頂點(diǎn)B,C在x軸上,A,D兩點(diǎn)分別在反比例函數(shù)y=﹣ (x<0)與y= (x>0)的圖象上,則▱ABCD的面積為 .
15.,是用大小相同的圓柱形油桶擺放成的一組有規(guī)律的圖案,圖案(1)需要2只油桶,圖案(2)需要5只油桶,圖案(3)需要10只油桶,圖案(4)需要17只油桶,…,按此規(guī)律擺下去,第n個(gè)圖案需要油桶 只(用含n的代數(shù)式表示)
三、解答題(本大題共8個(gè)小題,共75分)
16.(1)計(jì)算:(﹣1)3﹣( )﹣2× +6×|﹣ |
(2)化簡(jiǎn)并求值:( )÷ ,其中a=1,b=2.
17.在正方形網(wǎng)格中,我們把,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),連接任意兩個(gè)格點(diǎn)的線段叫網(wǎng)格線段,以網(wǎng)格線段為邊組成的圖形叫做格點(diǎn)圖形,在下列所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1.
(1)請(qǐng)你在圖1中畫一個(gè)格點(diǎn)圖形,且該圖形是邊長(zhǎng)為 的菱形;
(2)請(qǐng)你在圖2中用網(wǎng)格線段將其切割成若干個(gè)三角形和正方形,拼接成一個(gè)與其面積相等的正方形,并在圖3中畫出格點(diǎn)正方形.
18.閱讀與思考
婆羅摩笈多(Brahmagupta),是一位印度數(shù)學(xué)家和天文學(xué)家,書寫了兩部關(guān)于數(shù)學(xué)和天文學(xué)的書籍,他的一些數(shù)學(xué)成就在世界數(shù)學(xué)史上有較高的地位,他的負(fù)數(shù)概念及加減法運(yùn)算僅晚于中國(guó)《九章算術(shù)》,而他的負(fù)數(shù)乘除法法則在全世界都是領(lǐng)先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及部分證明過(guò)程如下:
已知:1,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC⊥BD于點(diǎn)P,PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)請(qǐng)你閱讀婆羅摩笈多定理的證明過(guò)程,完成剩余的證明部分.
(2)已知:2,△ABC內(nèi)接于⊙O,∠B=30°,∠ACB=45°,AB=2,點(diǎn)D在⊙O上,∠BCD=60°,連接AD,與BC交于點(diǎn)P,作PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,則PN的長(zhǎng)為 .
19.霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康,太原市會(huì)持續(xù)出現(xiàn)霧霾天氣嗎?在2016年2月周末休息期間,某校九年級(jí)1班綜合實(shí)踐小組的同學(xué)以“霧霾天氣的主要成因”為主題,隨機(jī)調(diào)查了太原市部分市民的觀點(diǎn),并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計(jì)圖表,觀察并回答下列問(wèn)題:
類別 霧霾天氣的主要成因 百分比
A 工業(yè)污染 45%
B 汽車尾氣排放 m
C 城中村燃煤?jiǎn)栴} 15%
D 其他(綠化不足等) n
(1)請(qǐng)你求出本次被調(diào)查市民的人數(shù)及m,n的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若太原市有300萬(wàn)人口,請(qǐng)你估計(jì)持有A,B兩類看法的市民共有多少人?
(3)學(xué)校要求小穎同學(xué)在A,B,C,D這四個(gè)霧霾天氣的主要成因中,隨機(jī)抽取兩項(xiàng)作為課題研究的項(xiàng)目進(jìn)行考察分析,請(qǐng)用畫樹狀圖或列表的方法,求出小穎同學(xué)剛好抽到B(汽車尾氣排放),C(城中村燃煤?jiǎn)栴})的概率.(用A,B,C,D表示各項(xiàng)目)
20.山西綿山是中國(guó)歷史文化名山,因春秋時(shí)期晉國(guó)介子推攜母隱居于此被焚而著稱,1,是綿山上介子推母子的塑像,某游客計(jì)劃測(cè)量這座塑像的高度,由于游客無(wú)法直接到達(dá)塑像底部,因此該游客計(jì)劃借助坡面高度來(lái)測(cè)量塑像的高度;2,在塑像旁山坡坡腳A處測(cè)得塑像頭頂C的仰角為75°,當(dāng)從A處沿坡面行走10米到達(dá)P處時(shí),測(cè)得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側(cè)傾器高度忽略不計(jì),結(jié)果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)
21.LED燈具有環(huán)保節(jié)能、投射范圍大、無(wú)頻閃、使用壽命較長(zhǎng)等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用,某校數(shù)學(xué)興趣小組為了解LED燈泡與普通白熾燈泡的銷售情況,進(jìn)行了市場(chǎng)調(diào)查:某商場(chǎng)購(gòu)進(jìn)一批30瓦的LED燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價(jià)與標(biāo)價(jià)如下表:www-2-1-cnjy-com
LED燈泡 普通白熾燈泡
進(jìn)價(jià)(元) 45 25
標(biāo)價(jià)(元) 60 30
(1)該商場(chǎng)購(gòu)進(jìn)了LED燈泡與普通白熾燈泡共300個(gè),LED燈泡按標(biāo)價(jià)進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200元,求該商場(chǎng)購(gòu)進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個(gè)?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場(chǎng)計(jì)劃再次購(gòu)進(jìn)兩種燈泡120個(gè),在不打折的情況下,請(qǐng)問(wèn)如何進(jìn)貨,銷售完這批燈泡時(shí)獲利最多且不超過(guò)進(jìn)貨價(jià)的30%,并求出此時(shí)這批燈泡的總利潤(rùn)為多少元?
22.問(wèn)題背景
在數(shù)學(xué)活動(dòng)課上,張老師要求同學(xué)們拿兩張大小不同的矩形紙片進(jìn)行旋轉(zhuǎn)變換探究活動(dòng).1,在矩形紙片ABCD和矩形紙片EFGH中,AB=1,AD=2,且EF>AD,F(xiàn)G>AB,點(diǎn)E是AD的中點(diǎn),矩形紙片EFGH以點(diǎn)E為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中會(huì)產(chǎn)生怎樣的數(shù)量關(guān)系,提出恰當(dāng)?shù)臄?shù)學(xué)問(wèn)題并加以解決.2•1•c•n•j•y
解決問(wèn)題
下面是三個(gè)學(xué)習(xí)小組提出的數(shù)學(xué)問(wèn)題,請(qǐng)你解決這些問(wèn)題.
(1)“奮進(jìn)”小組提出的問(wèn)題是:1,當(dāng)EF與AB相交于點(diǎn)M,EH與BC相交于點(diǎn)N時(shí),求證:EM=EN.
(2)“雄鷹”小組提出的問(wèn)題是:在(1)的條件下,當(dāng)AM=CN時(shí),AM與BM有怎樣的數(shù)量關(guān)系,說(shuō)明理由.
(3)“創(chuàng)新”小組提出的問(wèn)題是;若矩形EFGH繼續(xù)以點(diǎn)E為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),當(dāng)∠AEF=60°時(shí),請(qǐng)你在圖2中畫出旋轉(zhuǎn)后的示意圖,并求出此時(shí)EF將邊BC分成的兩條線段的長(zhǎng)度.
23.1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與直線AC交于點(diǎn)C(2,3),直線AC與拋物線的對(duì)稱軸l相交于點(diǎn)D,連接BD.
(1)求拋物線的函數(shù)表達(dá)式,并求出點(diǎn)D的坐標(biāo);
(2)2,若點(diǎn)M、N同時(shí)從點(diǎn)D出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿DA、DB運(yùn)動(dòng),連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說(shuō)明理由,當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),點(diǎn)D′恰好落在x軸上?
(3)在平面內(nèi),是否存在點(diǎn)P(異于A點(diǎn)),使得以P、B、D為頂點(diǎn)的三角形與△ABD相似(全等除外)?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
>>>下一頁(yè)更多“2017呼市中考數(shù)學(xué)模擬試題答案”