數(shù)學(xué)應(yīng)用數(shù)學(xué)本科畢業(yè)論文
數(shù)學(xué)應(yīng)用數(shù)學(xué)本科畢業(yè)論文
20世紀(jì)下半葉以來,數(shù)學(xué)與其它學(xué)科的聯(lián)系更加密切,數(shù)學(xué)應(yīng)用的巨大發(fā)展是數(shù)學(xué)發(fā)展的顯著特征之一。下文是學(xué)習(xí)啦小編為大家搜集整理的關(guān)于數(shù)學(xué)應(yīng)用數(shù)學(xué)本科畢業(yè)論文的內(nèi)容,歡迎大家閱讀參考!
數(shù)學(xué)應(yīng)用數(shù)學(xué)本科畢業(yè)論文篇1
淺談數(shù)學(xué)創(chuàng)新思維在高中數(shù)學(xué)課堂的應(yīng)用
【摘要】減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān),提高我們高中數(shù)學(xué)教學(xué)的實(shí)效性是高中教改的重點(diǎn)嘗試。本文通過對高中學(xué)生數(shù)學(xué)思維障礙的成因及突破方法的分析,進(jìn)行研究性學(xué)習(xí),力求在高中數(shù)學(xué)教改中有所收獲,有所突破。
【關(guān)鍵詞】數(shù)學(xué)思維 數(shù)學(xué)思維障礙
一、 高中學(xué)生數(shù)學(xué)思維障礙的形成原因
根據(jù)布魯納的認(rèn)識發(fā)展理論,學(xué)習(xí)本身是一種認(rèn)識過程,在這個(gè)課程中,個(gè)體的學(xué)習(xí)總是要通過已知的內(nèi)部認(rèn)知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進(jìn)行整理加工,以一種易于掌握的形式加以儲存,也就是說學(xué)生能從原有的知識結(jié)構(gòu)中提取最有效的舊知識來吸納新知識,即找到新舊知識的“媒介點(diǎn)”,這樣,新舊知識在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識。
但是這個(gè)過程并非總是一次性成功的。一方面,如果在教學(xué)過程中,教師不顧學(xué)生的實(shí)際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進(jìn)行灌輸式教學(xué),則到學(xué)生自己去解決問題時(shí)往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時(shí)或者新舊知識中間缺乏必要的“媒介點(diǎn)”時(shí),這些新知識就會被排斥或經(jīng)“校正”后吸收。因此,如果教師的教學(xué)脫離學(xué)生的實(shí)際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時(shí)就勢必會造成學(xué)生對所學(xué)知識認(rèn)知上的不足、理解上的偏頗,從而在解決具體問題時(shí)就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。
二、高中數(shù)學(xué)思維障礙的具體表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:
1.數(shù)學(xué)思維的膚淺性:
由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實(shí)的片面性而把握事物的本質(zhì)。由此而產(chǎn)生的后果:學(xué)生在分析和解決數(shù)學(xué)問題時(shí),往往只順著事物的發(fā)展過程去思考問題,注重由因到果的思維習(xí)慣,不注重變換思維的方式,缺乏沿著多方面去探索解決問題的途徑和方法
2.數(shù)學(xué)思維的差異性:
由于每個(gè)學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點(diǎn),因此不同的學(xué)生對于同一數(shù)學(xué)問題的認(rèn)識、感受也不會完全相同,從而導(dǎo)致學(xué)生對數(shù)學(xué)知識理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問題時(shí),一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。如非負(fù)實(shí)數(shù)x,y滿足x+2y=1,求x2+y2的最大、最小值。在解決這個(gè)問題時(shí),如對x、y的范圍沒有足夠的認(rèn)識(0≤x≤1,0≤y≤1/2),那么就容易產(chǎn)生錯(cuò)誤。另一方面學(xué)生不知道用所學(xué)的數(shù)學(xué)概念、方法為依據(jù)進(jìn)行分析推理,對一些問題中的結(jié)論缺乏多角度的分析和判斷,缺乏對自我思維進(jìn)程的調(diào)控,從而造成障礙。如函數(shù)y= f(x)滿足f(2+x)=f(2-x)對任意實(shí)數(shù)x都成立,證明函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱。對于這個(gè)問題,一些基礎(chǔ)好的同學(xué)都不大會做(主要反映寫不清楚),我就動員學(xué)生看書,在函數(shù)這一章節(jié)中找相關(guān)的內(nèi)容看,待看完奇、偶函數(shù)、反函數(shù)與原函數(shù)的圖象對稱性之后,學(xué)生也就能較順利的解決這一問題了。
3.數(shù)學(xué)思維定勢的消極性:
由于高中學(xué)生已經(jīng)有相當(dāng)豐富的解題經(jīng)驗(yàn),因此,有些學(xué)生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經(jīng)驗(yàn),思維陷入僵化狀態(tài),不能根據(jù)新的問題的特點(diǎn)作出靈活的反應(yīng),常常阻抑更合理有效的思維甚至造成歪曲的認(rèn)識。
三、高中學(xué)生數(shù)學(xué)思維障礙的突破
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時(shí),要嚴(yán)格遵循學(xué)生認(rèn)知發(fā)展的階段性特點(diǎn),照顧到學(xué)生認(rèn)知水平的個(gè)性差異,強(qiáng)調(diào)學(xué)生的主體意識,發(fā)展學(xué)生的主動精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時(shí)要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進(jìn)一步明確學(xué)習(xí)的目的性,針對不同學(xué)生的實(shí)際情況,因材施教,分別給他們提出新的更高的奮斗目標(biāo),使學(xué)生有一種“跳一跳,就能摸到桃”的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識。
數(shù)學(xué)意識是學(xué)生在解決數(shù)學(xué)問題時(shí)對自身行為的選擇,它既不是對基礎(chǔ)知識的具體應(yīng)用,也不是對應(yīng)用能力的評價(jià),數(shù)學(xué)意識是指學(xué)生在面對數(shù)學(xué)問題時(shí)該做什么及怎么做,至于做得好壞,當(dāng)屬技能問題,有時(shí)一些技能問題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對數(shù)學(xué)問題,首先想到的是套公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點(diǎn)的題型便無從下手,無法解決,這是數(shù)學(xué)意識落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強(qiáng)調(diào)基礎(chǔ)知識的準(zhǔn)確性、規(guī)范性、熟練程度的同時(shí),我們應(yīng)該加強(qiáng)數(shù)學(xué)意識教學(xué),指導(dǎo)學(xué)生以意識帶動雙基,將數(shù)學(xué)意識滲透到具體問題之中。提高學(xué)生的數(shù)學(xué)意識是突破學(xué)生數(shù)學(xué)思維障礙的一個(gè)重要環(huán)節(jié)。
3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢的消極作用。
在高中數(shù)學(xué)教學(xué)中,我們不僅僅是傳授數(shù)學(xué)知識,培養(yǎng)學(xué)生的思維能力也應(yīng)是我們的教學(xué)活動中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對于突破學(xué)生的數(shù)學(xué)思維障礙會起到極其重要的作用。
在教學(xué)中還應(yīng)鼓勵(lì)學(xué)生進(jìn)行求異思維活動,培養(yǎng)學(xué)生善于思考、獨(dú)立思考的方法,不滿足于用常規(guī)方法取得正確答案,而是多嘗試、探索最簡單、最好的方法解決問題的習(xí)慣,發(fā)展思維的創(chuàng)造性也是突破學(xué)生思維障礙的一條有效途徑。 當(dāng)前,素質(zhì)教育已經(jīng)向我們傳統(tǒng)的高中數(shù)學(xué)教學(xué)提出了更高的要求。但只要我們堅(jiān)持以學(xué)生為主體,以培養(yǎng)學(xué)生的思維發(fā)展為己任,則勢必會提高高中學(xué)生數(shù)學(xué)教學(xué)質(zhì)量,擺脫題海戰(zhàn)術(shù),真正減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān),從而為提高高中學(xué)生的整體素質(zhì)作出我們數(shù)學(xué)教師應(yīng)有的貢獻(xiàn)。
參考文獻(xiàn):
[1]貢永生,精心建構(gòu)問題培養(yǎng)創(chuàng)新意識[J].中小學(xué)數(shù)學(xué),2001
[2]肖川,教育的使命與責(zé)任.岳麓書社出版,2007
[3]曾琦,新課程與教師角色轉(zhuǎn)變.教育科學(xué)出版社,2003
[4]鐘啟泉,新課程的理念與創(chuàng)新[M].北京:高等教育出版社,2003
>>>下頁帶來更多的數(shù)學(xué)應(yīng)用數(shù)學(xué)本科畢業(yè)論文