測(cè)繪工程專業(yè)畢業(yè)論文范文
測(cè)繪工程專業(yè)畢業(yè)論文范文
隨著科學(xué)技術(shù)的不斷發(fā)展,許多新技術(shù)被應(yīng)用到測(cè)繪工程當(dāng)中來(lái),在某種程度上提升了測(cè)繪的準(zhǔn)確性,但同時(shí)也使得測(cè)繪工程更加復(fù)雜化。下文是學(xué)習(xí)啦小編為大家搜集整理的關(guān)于測(cè)繪工程專業(yè)畢業(yè)論文范文的內(nèi)容,歡迎大家閱讀參考!
測(cè)繪工程專業(yè)畢業(yè)論文范文篇1
論工程測(cè)繪中的GPS測(cè)繪技術(shù)
摘 要:自上世紀(jì)GPS技術(shù)問(wèn)世以來(lái),其發(fā)展速度異常迅猛,在工程建設(shè)、國(guó)防、交通、通信等方面得到了長(zhǎng)足的發(fā)展,文章重點(diǎn)就其在工程測(cè)繪的應(yīng)用展開(kāi)討論。
關(guān)鍵詞:工程;GPS;技術(shù)
1 引言
GPS技術(shù)最先是從美國(guó)發(fā)展來(lái)的,它譯成中文叫做全球定位系統(tǒng)。全球定位系統(tǒng)分別由軟件和硬件兩部分構(gòu)成。通過(guò)計(jì)算機(jī)編程,由軟件開(kāi)發(fā)員開(kāi)發(fā)各種使用的軟件;組成衛(wèi)星的各種裝置和地面的信號(hào)接收設(shè)備即為硬件。隨著GPS技術(shù)的飛速發(fā)展,GPS技術(shù)應(yīng)用的范圍也越來(lái)越廣,作為先進(jìn)的測(cè)量手段和新的生產(chǎn)力,其具有全天候、高精度和自動(dòng)測(cè)量的良好特性,經(jīng)過(guò)多年的發(fā)展,在經(jīng)濟(jì)建設(shè)、交通建設(shè)、國(guó)防建設(shè)以及社會(huì)的各個(gè)領(lǐng)域GPS技術(shù)都取得了驕人的成績(jī)。在工程測(cè)繪這一領(lǐng)域,GPS技術(shù)也有非常廣泛的應(yīng)用。
2 GPS測(cè)量技術(shù)的特點(diǎn)
與傳統(tǒng)的測(cè)量技術(shù)相比,GPS測(cè)量技術(shù)有非常明顯的進(jìn)步,其優(yōu)越性表現(xiàn)在以下幾個(gè)方面,對(duì)于GPS測(cè)量的結(jié)果,它的精確度更高;且測(cè)量時(shí)其計(jì)算速度更快。它可以在一天之中任意時(shí)刻進(jìn)行,不僅如此,在傳統(tǒng)的測(cè)量技術(shù)基礎(chǔ)之上,GPS還增加了一些新的功能。讓GPS技術(shù)與計(jì)算機(jī)技術(shù)相結(jié)合,可以在測(cè)量時(shí)大大簡(jiǎn)化操作程序,從而可以降低操作員對(duì)一些專業(yè)知識(shí)的要求,極大地拓展了GPS的市場(chǎng)。
2.1 觀測(cè)速率提高
自從GPS技術(shù)被開(kāi)發(fā)出來(lái),其優(yōu)越性使得其發(fā)展迅速。隨著電子科學(xué)技術(shù)以及軟件技術(shù)的發(fā)展,軟件的功能也在不斷地改良。到目前,對(duì)20k千米以范圍以內(nèi)的靜態(tài)目標(biāo)進(jìn)行精確的定位只要用15分鐘就能夠完成。當(dāng)基準(zhǔn)站與各流動(dòng)站的距離在1.5千米范圍之內(nèi)時(shí),流動(dòng)站觀測(cè)只要不到2分鐘就可以完成對(duì)靜態(tài)相對(duì)定位的測(cè)量。
2.2 準(zhǔn)確性更高的定位
通過(guò)實(shí)際測(cè)量的數(shù)據(jù)可以得知,與傳統(tǒng)的定位方式相比,GPS的定位有更高的準(zhǔn)確度。具體的數(shù)據(jù)如下所示,在5千米的范圍之內(nèi),GPS的定位精度大約在6米至10米之間;在100到150千米的范圍內(nèi),GPS的定位精確度大約在7米到10米之間;當(dāng)定位范圍達(dá)到1000千米時(shí),其精度可達(dá)9米至10米。在300米至1500米的工程測(cè)量定位時(shí),倘若進(jìn)行1個(gè)小時(shí)以上的觀測(cè),那么觀測(cè)數(shù)據(jù)的誤差能夠控制在在1m毫米以內(nèi),與傳統(tǒng)的ME-5000電磁波測(cè)距儀測(cè)所測(cè)得的數(shù)據(jù)相比,其精確度有大幅度的提高。
2.3 更簡(jiǎn)單的操作
GPS測(cè)繪技術(shù)在經(jīng)過(guò)與其他的技術(shù)的手段相互結(jié)合后,可以大大簡(jiǎn)化其操作方法,不僅如此,GPS所運(yùn)用的范圍也將得到拓展。比起其他的測(cè)量方法,GSP的集成化以及自動(dòng)化的操作程度有非常明顯的提高。GPS適用于測(cè)繪內(nèi)以及測(cè)繪外行業(yè)領(lǐng)域,工作人員可以輕松地通過(guò)軟件系統(tǒng)來(lái)操控作業(yè)。軟件系統(tǒng)可以避免人工測(cè)繪的誤差,這樣,不僅能夠減少工作人員工作量,同時(shí)也能大大提高操作的準(zhǔn)確度。
3 工程測(cè)繪中GPS測(cè)量技術(shù)的應(yīng)用
在工程測(cè)繪中,實(shí)時(shí)動(dòng)態(tài)差分法是常用的GPS測(cè)量技術(shù)。此方法是以GPS測(cè)量方法為基礎(chǔ),并經(jīng)過(guò)系統(tǒng)的改進(jìn)而得到的,比起原來(lái)的GSP測(cè)繪技術(shù),此法在性能方面有更大的進(jìn)步,原先的GPS測(cè)量得到的原始數(shù)據(jù)并不是很精確,要獲得要求精度的數(shù)據(jù),還需要進(jìn)行相應(yīng)的處理。但是實(shí)時(shí)動(dòng)態(tài)差分法卻可以在實(shí)時(shí)的測(cè)量過(guò)程中,不需要進(jìn)行數(shù)據(jù)的特殊處理,直接獲得所需的數(shù)據(jù)。這更加提高了測(cè)量的速率,對(duì)與GPS技術(shù)以后的發(fā)展具有不可忽視的作用。這種方法如果應(yīng)用于工程測(cè)繪中,勢(shì)必會(huì)給地形測(cè)圖、工程放樣等操作拓展出一個(gè)新方向,從而大大地提高測(cè)繪工作的效率及其測(cè)量數(shù)據(jù)的準(zhǔn)確性。在實(shí)際測(cè)量工作中,GPS測(cè)量技術(shù)被廣泛應(yīng)用,其具體的應(yīng)用主要是以下幾個(gè)方面:
3.1 測(cè)定大地測(cè)量控制網(wǎng)點(diǎn)
現(xiàn)階段,用常規(guī)技術(shù)方法建立的大地控制網(wǎng)已經(jīng)被GPS測(cè)量技術(shù)控制網(wǎng)完全取代了。在我國(guó),于1991年開(kāi)始用GPS測(cè)量大地控制網(wǎng),利用GPS全球定位技術(shù)重新精確測(cè)量我國(guó)的基礎(chǔ)控制網(wǎng)。由于我國(guó)大地控制網(wǎng)點(diǎn)之間大都相距幾千公里,要完成高精度的遠(yuǎn)控制點(diǎn)的測(cè)量,用常規(guī)的測(cè)量工具是行不通的,而且常規(guī)的測(cè)量工具測(cè)量效率很低消。與全國(guó)的控制網(wǎng)的測(cè)量相比較,城市控制網(wǎng)的測(cè)量點(diǎn)通常只相距幾十公里,城市控制網(wǎng)要求其精度高、面積廣、使用頻繁。用常規(guī)的測(cè)量工具測(cè)量,會(huì)導(dǎo)致測(cè)量精度不均勻,并且控制點(diǎn)經(jīng)常遭到破壞,會(huì)嚴(yán)重影響測(cè)量的進(jìn)度。GPS具有測(cè)量范圍廣、效率高、精度高等一系列優(yōu)點(diǎn),可以很容易解決以上問(wèn)題,從而能夠使工程測(cè)量工作取得突破性的進(jìn)展。
3.2 工程變形的監(jiān)測(cè)
所謂工程變形,就是在工程建設(shè)當(dāng)中,遇到由于地殼運(yùn)動(dòng)而造成的建筑物位移,變形類型可以分為陸地工程的變形、地表沉降以及圍堰大壩的變形等。在工程變形監(jiān)測(cè)的四個(gè)階段:基準(zhǔn)設(shè)計(jì)、結(jié)構(gòu)強(qiáng)度設(shè)計(jì)、觀測(cè)時(shí)段設(shè)計(jì)、監(jiān)測(cè)周期設(shè)計(jì),GPS技術(shù)都起到的極為重要的作用。
3.3 國(guó)土地形地貌測(cè)繪中的應(yīng)用
在工程測(cè)量中,是常用的GPS測(cè)量技術(shù),采用這種方法,在戶外觀測(cè)之后立即能夠獲得高精度的定位,這使得實(shí)時(shí)動(dòng)態(tài)差分法在國(guó)土地形地貌測(cè)繪工作中有著重要的作用。在國(guó)土地形地貌測(cè)繪以及地籍測(cè)繪工作中,通過(guò)采用實(shí)時(shí)動(dòng)態(tài)差分的方法法來(lái)對(duì)土地權(quán)屬界點(diǎn)進(jìn)行精確測(cè)定,僅僅需要一名操作人員在每個(gè)測(cè)定點(diǎn)上花費(fèi)幾秒鐘時(shí)間,之后把得到的數(shù)據(jù)交給計(jì)算機(jī)軟件運(yùn)算處理,然后輸入GPS系統(tǒng)即可得到國(guó)土地形地貌或者地籍測(cè)繪圖。因?yàn)閷?shí)時(shí)動(dòng)態(tài)差分技術(shù)不需要測(cè)點(diǎn)間通視,而且需要的操作人員也極少,所以該技術(shù)很大程度地提高了國(guó)土地形地貌或地籍測(cè)繪工作的效率。
3.4 GPS在工程建設(shè)中的應(yīng)用
在城市建設(shè)的中,為了滿足城市規(guī)劃的需要,可以采用GPS測(cè)繪技術(shù)。城市規(guī)劃具有要求精度高、控制面積大、使用頻繁等特點(diǎn),要把城市建成區(qū)和規(guī)劃區(qū)的進(jìn)行的嚴(yán)格劃分。對(duì)城市進(jìn)行一個(gè)整體的規(guī)劃,對(duì)日后建筑物的建設(shè)提前做出計(jì)劃,從而減少其對(duì)城市的局以及公共環(huán)境的影響,以實(shí)現(xiàn)對(duì)城市建設(shè)的合理化。隨著經(jīng)濟(jì)的不斷發(fā)展,現(xiàn)代化城市建設(shè)的發(fā)展越來(lái)越快,然而過(guò)度開(kāi)發(fā)城市的資源,對(duì)城市的合理化發(fā)展造成了嚴(yán)重影響。在這樣的情況下,對(duì)與城市的測(cè)量,有著更高的要求,工程的質(zhì)量和進(jìn)度與測(cè)量水平直接相關(guān)。城市控制測(cè)量的速率以及準(zhǔn)確度在引入GPS測(cè)繪技術(shù)后得到了大大的改善,由于GPS可以在任意時(shí)刻采集數(shù)據(jù),而且還可以根據(jù)要求進(jìn)行適當(dāng)?shù)恼{(diào)整,比傳統(tǒng)的測(cè)量方式有極大的進(jìn)步。速度快、精度高、費(fèi)用低以及操作簡(jiǎn)便是GPS非常明顯的優(yōu)勢(shì),因而GPS是現(xiàn)階段城市控制測(cè)繪的最好選擇。隨著新科技、新技術(shù)的不斷發(fā)展,GPS技術(shù)在該領(lǐng)域的發(fā)展將會(huì)獲得更大的優(yōu)勢(shì)。同時(shí),城市控制測(cè)量伴隨GPS技術(shù)的發(fā)展將會(huì)達(dá)到更高的水平。
除上述功能之外,GPS技術(shù)還能夠用于土地的動(dòng)態(tài)檢測(cè)。土地動(dòng)態(tài)檢測(cè)的傳統(tǒng)方法是平板儀補(bǔ)測(cè)法和簡(jiǎn)易補(bǔ)測(cè)。GPS的運(yùn)用改變并改善了動(dòng)態(tài)野外檢測(cè)的方法。由于GPS所具有的的精度高、速度快、效率高的特點(diǎn),使得這種新的測(cè)繪方法足可以滿足現(xiàn)階段的土地動(dòng)態(tài)檢測(cè)的需要。并且同時(shí)解決了了傳統(tǒng)方法存在的速度慢、效率低的問(wèn)題,同時(shí)還可以大大提高檢測(cè)的速度以及數(shù)據(jù)的精準(zhǔn)度,在進(jìn)行動(dòng)態(tài)監(jiān)測(cè)的同時(shí),也節(jié)省了大量的時(shí)間和人力。
4 結(jié)束語(yǔ)
由于GPS具有的諸多方面的優(yōu)勢(shì),GPS勢(shì)必會(huì)給工程測(cè)繪工作帶來(lái)全新的革命,各領(lǐng)域測(cè)量技術(shù)將會(huì)得到改革,不僅工程測(cè)繪的數(shù)據(jù)會(huì)更加真實(shí)、更加準(zhǔn)確、更加可靠,而且將會(huì)擴(kuò)大工程測(cè)繪的服務(wù)范圍, 從而使工程測(cè)繪的質(zhì)量和效率得到明顯的提高,成為多用途的國(guó)際性高新技術(shù)產(chǎn)業(yè)。在工程測(cè)繪中,GPS技術(shù)使用已經(jīng)非常普遍了,高精度、高可靠性、高度自動(dòng)化使得GPS獲得了工程測(cè)繪界的廣泛贊譽(yù),毫無(wú)疑問(wèn),在未來(lái)的一段時(shí)間之內(nèi)GPS技術(shù)將主導(dǎo)整個(gè)工程測(cè)繪領(lǐng)域,并且在技術(shù)的革新進(jìn)步的同時(shí),GPS將用更強(qiáng)的實(shí)用性拓展廣闊的發(fā)展空間。
參考文獻(xiàn)
[1]陳序.GPS技術(shù)在工程測(cè)繪中的應(yīng)用研究[J].科技與企業(yè),2013,6.
[2]林新超.GPS測(cè)量技術(shù)在工程測(cè)繪中的應(yīng)用分析[J].科技風(fēng),2012,1.
[3]楊立忠,左立新.GPS技術(shù)在工程測(cè)繪中的應(yīng)用分析[J].科技傳播,2012,1.
測(cè)繪工程專業(yè)畢業(yè)論文范文篇2
淺談工程測(cè)量變形測(cè)繪
[摘 要]本文作者通過(guò)對(duì)變形測(cè)繪的具體分析,內(nèi)容包括檢測(cè)方案的確定,位移監(jiān)測(cè)點(diǎn)的布設(shè)等要點(diǎn),將變形測(cè)繪作為為重點(diǎn)論述點(diǎn),通過(guò)具體的操作性分析達(dá)到對(duì)工程標(biāo)準(zhǔn)的嚴(yán)格把握,以期為工程測(cè)繪提供重要參考價(jià)值。
[關(guān)鍵詞]工程測(cè)量;變形測(cè)繪;分析
變形測(cè)量越來(lái)越引起人們的重視。變形測(cè)量是監(jiān)測(cè)、分析及預(yù)報(bào)工程建筑物及與工程有關(guān)的變形的主要方法;是對(duì)建筑物、構(gòu)筑物及其地基或一定范圍內(nèi)巖體及土體的位移、沉降、傾斜、撓度、裂縫等所進(jìn)行的測(cè)量工作。而我們目前對(duì)建筑物的變形測(cè)量主要包括兩個(gè)方面,一方面是沉降觀測(cè),另一方面是位移監(jiān)測(cè)。沉降觀測(cè)主要是使用精密水準(zhǔn)儀采用周期的觀測(cè)方法定期測(cè)出建筑物在不同荷載下的沉降量,及時(shí)掌握建筑物的沉降情況,了解有無(wú)異?,F(xiàn)象,以便采取合適的補(bǔ)救辦法以保證建筑物的安全穩(wěn)定,更能準(zhǔn)確反映地基勘探、基礎(chǔ)設(shè)計(jì)及施工質(zhì)量的優(yōu)劣;位移監(jiān)測(cè)是為了保證建筑物各軸線的位置,它是對(duì)施工質(zhì)量和地基沉降的綜合影響。
1 監(jiān)測(cè)方案與方法
1.1 監(jiān)測(cè)項(xiàng)目選擇的原則
監(jiān)測(cè)項(xiàng)目選擇的原則,一般以光學(xué)機(jī)械和電子設(shè)備為先后順序選用設(shè)備,考慮經(jīng)濟(jì)上的合理性,不影響正常施工及使用,能形成統(tǒng)一的結(jié)論和報(bào)表。
1.2 監(jiān)測(cè)點(diǎn)的布置步驟
測(cè)線布置。圈定主要的監(jiān)測(cè)范圍,估計(jì)主要滑動(dòng)方向按滑動(dòng)方向及范圍確定測(cè)線,選取典型斷面布置測(cè)線,再按測(cè)線布置相應(yīng)監(jiān)測(cè)點(diǎn)。施工的初期爆破階段1次/12天每次爆破后監(jiān)測(cè)1次施工階段12次/周地表及地下位移為主運(yùn)營(yíng)階段1次/2月,雨季1次/2月。變形量增大和變形速率加快時(shí)加大監(jiān)測(cè)頻次。正常情況下在爆破階段完成后監(jiān)測(cè)以地表及地下位移為主一般在初測(cè)時(shí)每日或兩日一次在施工階段3―7日一次在施工完成后進(jìn)入運(yùn)營(yíng)階段且在變形及變形速率在控制的允許范圍之內(nèi)時(shí)一般以每一個(gè)水文年為一周期每?jī)蓚€(gè)月左右監(jiān)測(cè)一次雨季加強(qiáng)到一個(gè)月一次。
2 變形測(cè)繪監(jiān)測(cè)方案
監(jiān)測(cè)方案設(shè)計(jì)應(yīng)以“先整體后局部,先控制后變形”的原則做為總體思路,首先逐次布測(cè)變形監(jiān)測(cè)的基準(zhǔn)控制網(wǎng)、工作基點(diǎn),再在基準(zhǔn)點(diǎn)或工作基點(diǎn)上觀測(cè)沉降和水平位移。當(dāng)觀測(cè)條件較好時(shí),盡可能少設(shè)或不設(shè)工作基點(diǎn),直接利用基準(zhǔn)點(diǎn)測(cè)量變形觀測(cè)點(diǎn),以降低工作量和提高變形測(cè)量精度。
監(jiān)測(cè)方案包括監(jiān)測(cè)精度設(shè)計(jì)、基準(zhǔn)網(wǎng)及工作基點(diǎn)布測(cè)、觀測(cè)點(diǎn)布設(shè)、監(jiān)測(cè)周期及頻次的確定、觀測(cè)方法的選擇、監(jiān)測(cè)數(shù)據(jù)的采集、處理、分析及整理等內(nèi)容。根據(jù)工程結(jié)構(gòu)特點(diǎn)、地形地質(zhì)條件和變形特征等實(shí)際情況而定。
3 變形觀測(cè)方法
3.1 建立固定的觀測(cè)路線
依據(jù)變形觀測(cè)點(diǎn)的埋設(shè)要求或圖紙?jiān)O(shè)計(jì)的變形觀測(cè)點(diǎn)布點(diǎn)圖,確定變形觀測(cè)點(diǎn)的位置。在控制點(diǎn)與變形觀測(cè)點(diǎn)之間建立固定的觀測(cè)路線,并在架設(shè)儀器站點(diǎn)與轉(zhuǎn)點(diǎn)處作好標(biāo)記,保證各次觀測(cè)均沿同一路線進(jìn)行。
3.2 觀測(cè)方法
根據(jù)施測(cè)方案及確定的觀測(cè)周期,變形監(jiān)測(cè)應(yīng)在觀測(cè)點(diǎn)穩(wěn)固后及時(shí)進(jìn)行首次觀測(cè),每個(gè)觀測(cè)點(diǎn)首次坐標(biāo)或高程應(yīng)在同期觀測(cè)兩次后決定。應(yīng)使用高精度測(cè)量?jī)x器,采取適當(dāng)?shù)姆椒ê痛胧勒障嚓P(guān)技術(shù)規(guī)范的要求進(jìn)行外業(yè)觀測(cè)。對(duì)于陸地部分的垂直位移觀測(cè)點(diǎn),可采用常規(guī)水準(zhǔn)測(cè)量或光電測(cè)距三角高程測(cè)量方法觀測(cè);對(duì)于水中位移觀測(cè)點(diǎn),應(yīng)按跨河高程測(cè)量方法進(jìn)行觀測(cè)。
3.3 觀測(cè)中的注意事項(xiàng)
嚴(yán)格按測(cè)量規(guī)范的要求施測(cè);水準(zhǔn)基點(diǎn)使用時(shí)應(yīng)作穩(wěn)定性檢驗(yàn),并以穩(wěn)定或相對(duì)穩(wěn)定的點(diǎn)作為變形分析的參考點(diǎn);每次觀測(cè)前,對(duì)所使用的儀器和設(shè)備應(yīng)進(jìn)行檢驗(yàn)校正,并保留檢驗(yàn)記錄;水準(zhǔn)測(cè)量中,前、后視觀測(cè)宜使用同一水準(zhǔn)尺;各次觀測(cè)必須按照固定的觀測(cè)路線進(jìn)行,使用同一臺(tái)儀器和設(shè)備以及固定觀測(cè)員;觀測(cè)時(shí)要避免陽(yáng)光直射,且各次觀測(cè)環(huán)境基本一致;隨時(shí)觀測(cè),隨時(shí)檢核計(jì)算,觀測(cè)要一次完成,中途不中斷;在雨季前后要聯(lián)測(cè),檢查水準(zhǔn)點(diǎn)的高程是否有變動(dòng)。
4 變形監(jiān)測(cè)的精度、觀測(cè)儀器和觀測(cè)周期
4.1 變形監(jiān)測(cè)的精度
測(cè)量等級(jí)及精度取決于變形觀測(cè)的目的、變形觀測(cè)體的級(jí)別以及預(yù)計(jì)變形量的“必要精度”。為了保證監(jiān)測(cè)精度,整個(gè)作業(yè)期間不宜更換觀測(cè)人員和主要觀測(cè)的儀器,每次觀測(cè)次序和行進(jìn)路線也應(yīng)盡相同。
4.2 測(cè)量?jī)x器設(shè)備
測(cè)量?jī)x器設(shè)備的選擇要在滿足精度要求的前提下,力求先進(jìn)和經(jīng)濟(jì)實(shí)用,要盡可能的采用快速高效的作業(yè)方法。推薦NA型精密水準(zhǔn)儀觀測(cè)和用徠卡TPS402全站儀進(jìn)行測(cè)距、三角高程觀測(cè);收斂監(jiān)測(cè)用收斂監(jiān)測(cè)儀器和三維位移觀測(cè)相結(jié)合。三維位移觀測(cè)又可以分為絕對(duì)坐標(biāo)觀測(cè)法和相對(duì)位移觀測(cè)法。
4.3 變形監(jiān)測(cè)的周期
變形監(jiān)測(cè)周期應(yīng)以能系統(tǒng)的反應(yīng)觀測(cè)變形體的變形過(guò)程且又不遺漏其變化時(shí)刻為原則,應(yīng)根據(jù)單位時(shí)間內(nèi)變形量的大小及外界因素的影響程度來(lái)確定。當(dāng)發(fā)現(xiàn)變形異常時(shí),應(yīng)及時(shí)增加觀測(cè)次數(shù)。根據(jù)工地實(shí)際情況,結(jié)合業(yè)主、監(jiān)理的意見(jiàn),在穩(wěn)定地區(qū),首次觀測(cè)在每次放炮后距離掌子面25米處設(shè)點(diǎn)觀測(cè);獲得基礎(chǔ)數(shù)據(jù)后25-50米處隔天監(jiān)測(cè)一次,距離掌子面50米后的點(diǎn)每周監(jiān)測(cè)一次,連續(xù)四周,然后改為每月一次。當(dāng)位移量較小、變形趨于穩(wěn)定時(shí),觀測(cè)間隔適當(dāng)放寬,當(dāng)變形值較大或出現(xiàn)異常數(shù)據(jù)時(shí),應(yīng)加大觀測(cè)頻率,并及時(shí)向業(yè)主和監(jiān)理單位報(bào)告。實(shí)際執(zhí)行過(guò)程中許多監(jiān)測(cè)點(diǎn)都是每周監(jiān)測(cè)一次。監(jiān)測(cè)資料應(yīng)及時(shí)給予洞挖部門(mén)和地質(zhì)部,洞挖部門(mén)應(yīng)及時(shí)按合同報(bào)送監(jiān)理工程師。
5 位移觀測(cè)點(diǎn)的布設(shè)(以基坑觀測(cè)為例)
5.1 位移、沉降監(jiān)測(cè)基準(zhǔn)點(diǎn)的建立。根據(jù)現(xiàn)場(chǎng)實(shí)地踏勘的情況,考慮基準(zhǔn)點(diǎn)的穩(wěn)定性和觀測(cè)精度要求,在工程現(xiàn)場(chǎng)旁距基坑邊5倍開(kāi)挖深度距離以外的穩(wěn)定土體中布設(shè)7個(gè)基準(zhǔn)點(diǎn)(測(cè)量控制點(diǎn))進(jìn)行互相校核,它們的編號(hào)為WJ1、WJ2、WJ3、WJ4、CJ1、CJ2、CJ3;4個(gè)位移基準(zhǔn)點(diǎn)每個(gè)與每邊成一直線布置的水平位移觀測(cè)點(diǎn)構(gòu)成位移監(jiān)測(cè)網(wǎng),4個(gè)位移基準(zhǔn)點(diǎn)和3個(gè)沉降基準(zhǔn)點(diǎn)布置在相對(duì)穩(wěn)定且大于5倍基坑深的距基坑邊的位置,但必須在建筑物所產(chǎn)生的壓力影響范圍以外。
5.2 基坑支護(hù)圍護(hù)結(jié)構(gòu)頂部水平位移、沉降觀測(cè)點(diǎn)的布置。觀測(cè)點(diǎn)埋設(shè)時(shí)應(yīng)注意觀測(cè)點(diǎn)與被觀測(cè)對(duì)象的牢靠結(jié)合,使得觀測(cè)點(diǎn)的變化能真正反映觀測(cè)對(duì)象的變化特征。位置的水平位移、沉降觀測(cè)點(diǎn)設(shè)在基坑支護(hù)圍護(hù)結(jié)構(gòu)頂部邊線部位,觀測(cè)標(biāo)志擬采用Ф16膨脹螺栓安裝在基坑支護(hù)圍護(hù)結(jié)構(gòu)頂部上,頂端位置磨成半球狀。根據(jù)現(xiàn)場(chǎng)平面尺寸及測(cè)量規(guī)范要求。
工程測(cè)繪中的變形測(cè)量是一項(xiàng)長(zhǎng)期、艱巨而細(xì)致的基礎(chǔ)性工作,必須引起有關(guān)方面的高度重視。對(duì)于變形測(cè)量者來(lái)說(shuō),必須合理確定觀測(cè)精度。要根據(jù)地質(zhì)條件、地基處理方式、建筑物結(jié)構(gòu)特點(diǎn)和設(shè)計(jì)施工方案,編制出科學(xué)、經(jīng)濟(jì)和高效的技術(shù)設(shè)計(jì)方案和觀測(cè)細(xì)則。對(duì)工程頂面的水平位移要采用合理的方法進(jìn)行實(shí)測(cè)確定。加強(qiáng)對(duì)觀測(cè)成果進(jìn)行安全性分析,重視變形預(yù)報(bào)。在工程完工后,要能夠預(yù)報(bào)出滯后沉降量,制定出運(yùn)營(yíng)期間的長(zhǎng)期變形觀測(cè)方案,確保建筑物的安全運(yùn)營(yíng)。
6 結(jié)束語(yǔ)
測(cè)繪學(xué)是一門(mén)具有悠久歷史和現(xiàn)代發(fā)展的一級(jí)學(xué)科。該學(xué)科隨著科學(xué)技術(shù)的發(fā)展,服務(wù)領(lǐng)域也不斷拓寬。我國(guó)經(jīng)濟(jì)高速發(fā)展,大型工程項(xiàng)目迅猛發(fā)展,為了能夠確切反映工程物、構(gòu)筑物及其場(chǎng)地的實(shí)際變形程度或變形趨勢(shì),取得第一手的資料,驗(yàn)證設(shè)計(jì)方案的科學(xué)性,保證工程在施工及運(yùn)營(yíng)期間的安全。因此有必要對(duì)工程測(cè)量中變形測(cè)繪的有效措施闡述、總結(jié)。
參考文獻(xiàn)
[1] 李奇峰.淺析變形觀測(cè)在建筑工程中的實(shí)施應(yīng)用[J].企業(yè)導(dǎo)報(bào),2011,(12).
[2] 王鈞.淺談實(shí)際測(cè)量中對(duì)變形觀測(cè)的理解[J].科技創(chuàng)新導(dǎo)報(bào),2010,(32).