高中數(shù)學考試的蒙題技巧有哪些
高中數(shù)學考試的蒙題技巧有哪些
做高中數(shù)學題的時候同學們可以運用一些解題技巧,對于實在不會的也可以蒙一下,幸運女神或許能幫你提高分數(shù)哦。下面是小編分享的高考數(shù)學蒙題技巧守則,一起來看看吧。
高考數(shù)學蒙題技巧守則
1、答案有根號的,不選
2、答案有1的,選
3、三個答案是正的時候,在正的中選
4、有一個是正x,一個是負x的時候,在這兩個中選
5、題目看起來數(shù)字簡單,那么答案選復(fù)雜的,反之亦然
6、上一題選什么,這一題選什么,連續(xù)有三個相同的則不適合本條
7、答題答得好,全靠眼睛瞟
8、以上都不實用的時候選b
高考數(shù)學常考題型解題方法
1、圓錐曲線中最后題往往聯(lián)立起來很復(fù)雜導(dǎo)致算不出,這時你可以取特殊值法強行算出過程就是先聯(lián)立,后算代爾塔,用下韋達定理,列出題目要求解的表達式,就ok了。
2、高考數(shù)學必考題型之空間幾何,證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可。如果第一題真心不會做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的考生建議先隨便建立個空間坐標系,如果做錯了,至少還可以得幾分,這是一個投機取巧的技巧,但好比過一分不得!
3、空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可。如果第一題真心不會做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學建議先隨便建立個空間坐標系,做錯了還有2分可以得!
4、立體幾何中,求二面角b-oa-c的新方法。利用三面角余弦定理。設(shè)二面角b-oa-c是∠oa,∠aob是α,∠boc是β,∠aoc是γ,這個定理就是:cos∠oa=(cosβ-cosαcosγ)/sinαsinγ。知道這個定理,如果考試中遇到立體幾何求二面角的題,套一下公式就出來了,還來得及,試試?
5、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上;
6、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
高考數(shù)學解題時的注意事項
1.精選題目,避免題海戰(zhàn)術(shù)
只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數(shù)的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習的練習題,以了解高考題的形式、難度。
2.認真分析題目
解答任何一個數(shù)學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,消除這些差異。當然在這個過程中也反映出對數(shù)學基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學方法的靈活應(yīng)用能力。
3.做好題目總結(jié)
解題不是目的,我們是通過解題來檢驗我們的學習效果,發(fā)現(xiàn)學習中的不足,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結(jié):
1)在知識方面。題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
2)在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
3)能否歸納出題目的類型,進而掌握這類題目的解題方法。
猜你感興趣: