国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦 > > 高一數(shù)學知識點歸納總結

高一數(shù)學知識點歸納總結

時間: 康華0 分享

高一數(shù)學知識點歸納總結5篇

珍惜美好的學習時光吧,趁我們還年輕,趁我們還擁有無限的未來時光。用不斷積累的能量,去觸碰明天嶄新的朝陽。下面是小編為大家整理的高一數(shù)學知識點歸納總結,如果大家喜歡可以分享給身邊的朋友。

高一數(shù)學知識點歸納總結

高一數(shù)學知識點歸納總結【篇1】

圓的方程定義:

圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關系:

1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系.

①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.

①dR,直線和圓相離.

2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.

3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.

切線的性質(zhì)

⑴圓心到切線的距離等于圓的半徑;

⑵過切點的半徑垂直于切線;

⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

⑷經(jīng)過切點,與切線垂直的.直線必經(jīng)過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足.

切線的判定定理

經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線.

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

高一數(shù)學知識點歸納總結【篇2】

1、集合的含義:

“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

2、集合的表示

通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

有一些特殊的集合需要記憶:

非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

整數(shù)集Z有理數(shù)集Q實數(shù)集R

集合的表示方法:列舉法與描述法。

①列舉法:{a,b,c……}

②描述法:將集合中的.元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③語言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

強調(diào):描述法表示集合應注意集合的代表元素

A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

3、集合的三個特性

(1)無序性

指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:該題有兩組解。

(2)互異性

指集合中的元素不能重復,A={2,2}只能表示為{2}

(3)確定性

集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

高一數(shù)學知識點歸納總結【篇3】

指數(shù)函數(shù)

(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

(3)函數(shù)圖形都是下凹的.。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

(7)函數(shù)總是通過(0,1)這點。

(8)顯然指數(shù)函數(shù)無界。

奇偶性

定義

一般地,對于函數(shù)f(x)

(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

高一數(shù)學知識點歸納總結【篇4】

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的'三個特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

(2)元素的互異性:一個給定集合中的元素是的,不可重復的。

(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

3、集合的表示:{…}

(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

{x?R|x-3>2},{x|x-3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合

(2)無限集:含有無限個元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a¢A

注意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+

整數(shù)集Z

有理數(shù)集Q

實數(shù)集R

6、集合間的基本關系

(1).“包含”關系(1)—子集

定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。

高一數(shù)學知識點歸納總結【篇5】

冪函數(shù)的性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

排除了為負數(shù)這種可能,即對于x為大于且等于0的.所有實數(shù),a就不能是負數(shù)。

總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

(4)當a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

(6)顯然冪函數(shù)。

解題方法:換元法

解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變量代換法.通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來.或者變?yōu)槭煜さ男问剑褟碗s的計算和推證簡化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

1984305