高中數(shù)學(xué)高考考點(diǎn)分布總結(jié)_高考數(shù)學(xué)考點(diǎn)分布
高考數(shù)學(xué)的考點(diǎn)大致有一百多個(gè),但高漲同學(xué)們需首先掌握重點(diǎn)考點(diǎn),了解考點(diǎn)具體分布情況,下面學(xué)習(xí)啦小編給大家?guī)砀呖紨?shù)學(xué)考點(diǎn)分布,希望對(duì)你有幫助。
高中數(shù)學(xué)高考考點(diǎn)分布
考點(diǎn)1集合 考點(diǎn)2復(fù)數(shù)
考點(diǎn)3四個(gè)命題及邏輯用語 考點(diǎn)4奇偶函數(shù)
考點(diǎn)5反函數(shù) 考點(diǎn)6三角函數(shù)值的計(jì)算
考點(diǎn)7排列組合 考點(diǎn)8向量的平移
考點(diǎn)9圓錐曲線的離心率 考點(diǎn)10平面向量的計(jì)算
考點(diǎn)11球體 考點(diǎn)12函數(shù)在某點(diǎn)的切線及切線斜率
考點(diǎn)13指對(duì)函數(shù)的比較大小 考點(diǎn)14線性規(guī)劃
考點(diǎn)15二項(xiàng)式定律展開式的系數(shù) 考點(diǎn)16解圓錐曲線的相關(guān)問題
考點(diǎn)17直線與圓及點(diǎn)到直線的距離 考點(diǎn)18 三視圖
考點(diǎn)19程序框圖 考點(diǎn)20圖像問題
考點(diǎn)21小題解三角形 考點(diǎn)21圓錐曲線問題的參數(shù)計(jì)算
考點(diǎn)22頻率直方圖、抽樣調(diào)查、正態(tài)分布
考點(diǎn)23與重要不等式相關(guān)的極值問題
考點(diǎn)24導(dǎo)數(shù)與函數(shù)的零點(diǎn)和極值
考點(diǎn)25函數(shù)的增減性、周期性極限與連續(xù)性
考點(diǎn)26三角函數(shù) 考點(diǎn)27概率
考點(diǎn)28立體幾何 考點(diǎn)29解析幾何
考點(diǎn)30導(dǎo)數(shù) 考點(diǎn)31幾何證明
考點(diǎn)32坐標(biāo)系與參數(shù)方程極坐標(biāo)考點(diǎn)33不等式
高中數(shù)學(xué)學(xué)習(xí)方法
課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高考數(shù)學(xué)考點(diǎn)
高考數(shù)學(xué)考點(diǎn)1:直線方程
1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是.
注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在.
?、诿恳粭l直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確定.
2. 直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式.
特別地,當(dāng)直線經(jīng)過兩點(diǎn),即直線在軸,軸上的截距分別為時(shí),直線方程是:.
注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.
附:直線系:對(duì)于直線的斜截式方程,當(dāng)均為確定的數(shù)值時(shí),它表示一條確定的直線,如果變化時(shí),對(duì)應(yīng)的直線也會(huì)變化.①當(dāng)為定植,變化時(shí),它們表示過定點(diǎn)(0,)的直線束.②當(dāng)為定值,變化時(shí),它們表示一組平行直線.
3. ⑴兩條直線平行:
∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的錯(cuò)誤.
(一般的結(jié)論是:對(duì)于兩條直線,它們?cè)谳S上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)
推論:如果兩條直線的傾斜角為則∥.
⑵兩條直線垂直:
兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)
4. 直線的交角:
⑴直線到的角(方向角);直線到的角,是指直線繞交點(diǎn)依逆時(shí)針方向旋轉(zhuǎn)到與重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是,當(dāng)時(shí).
?、苾蓷l相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個(gè)角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.
5. 過兩直線的交點(diǎn)的直線系方程為參數(shù),不包括在內(nèi))
高考數(shù)學(xué)考點(diǎn)2:導(dǎo)數(shù)
一、函數(shù)的單調(diào)性
在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f′(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.
f′(x)≥0⇔f(x)在(a,b)上為增函數(shù).
f′(x)≤0⇔f(x)在(a,b)上為減函數(shù).
二、函數(shù)的極值
1、函數(shù)的極小值:
函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其它點(diǎn)的函數(shù)值都小,f′(a)=0,而且在點(diǎn)x=a附近的左側(cè)f′(x)<0,右側(cè)f′(x)>0,則點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值.
2、函數(shù)的極大值:
函數(shù)y=f(x)在點(diǎn)x=b的函數(shù)值f(b)比它在點(diǎn)x=b附近的其他點(diǎn)的函數(shù)值都大,f′(b)=0,而且在點(diǎn)x=b附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,則點(diǎn)b叫做函數(shù)y=f(x)的極大值點(diǎn),f(b)叫做函數(shù)y=f(x)的極大值.
極小值點(diǎn),極大值點(diǎn)統(tǒng)稱為極值點(diǎn),極大值和極小值統(tǒng)稱為極值.
三、函數(shù)的最值
1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
2、若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.
四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法
1、確定函數(shù)f(x)的定義域;
2、求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實(shí)數(shù)根;
3、把函數(shù)f(x)的間斷點(diǎn)(即f(x)的無定義點(diǎn))的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來,然后用這些點(diǎn)把函數(shù)f(x)的定義區(qū)間分成若干個(gè)小區(qū)間;
4、確定f′(x)在各個(gè)開區(qū)間內(nèi)的符號(hào),根據(jù)f′(x)的符號(hào)判定函數(shù)f(x)在每個(gè)相應(yīng)小開區(qū)間內(nèi)的增減性.
高考數(shù)學(xué)考點(diǎn)3:幾何
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
看了“高中數(shù)學(xué)高考考點(diǎn)分布總結(jié)”的人還看了:
1.高考文科數(shù)學(xué)核心考點(diǎn)總結(jié)