国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 > 廣東高考文科數(shù)學公式

廣東高考文科數(shù)學公式

時間: 文娟843 分享

廣東高考文科數(shù)學公式

  考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的廣東高考文科數(shù)學公式,希望對大家有所幫助!

  廣東高考文科數(shù)學公式大總結

  拋物線:y = ax *+ bx + c

  就是y等于ax 的平方加上 bx再加上 c

  a > 0時開口向上

  a < 0時開口向下

  c = 0時拋物線經(jīng)過原點

  b = 0時拋物線對稱軸為y軸

  還有頂點式y(tǒng) = a(x+h)* + k

  就是y等于a乘以(x+h)的平方+k

  -h是頂點坐標的x

  k是頂點坐標的y

  一般用于求最大值與最小值

  拋物線標準方程:y^2=2px

  它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2

  由于拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py

  圓:體積=4/3(pi)(r^3)

  面積=(pi)(r^2)

  周長=2(pi)r

  圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  (一)橢圓周長計算公式

  橢圓周長公式:L=2πb+4(a-b)

  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

  (二)橢圓面積計算公式

  橢圓面積公式: S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數(shù)為體,公式為用。

  橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高

  三角函數(shù):

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式:

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式:

  sin5A=16sinA^5-20sinA^3+5sinA

  cos5A=16cosA^5-20cosA^3+5cosA

  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式:

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式:

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式:

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

  九倍角公式:

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

  an9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式:

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

  0A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

  ·萬能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

  某些數(shù)列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關系 x1+x2=-b/a x1*x2=c/a 注:韋達定理

  判別式 b2-4a=0 注:方程有相等的兩實根

  b2-4ac>0 注:方程有兩個不相等的個實根

  b2-4ac<0 注:方程有共軛復數(shù)根

  公式分類 公式表達式

  圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h

  正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'

  圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h

  圖形周長 面積 體積公式

  長方形的周長=(長+寬)×2

  正方形的周長=邊長×4

  長方形的面積=長×寬

  正方形的面積=邊長×邊長

  三角形的面積

  已知三角形底a,高h,則S=ah/2

  已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)

  和:(a+b+c)*(a+b-c)*1/4

  已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

  設三角形三邊分別為a、b、c,內切圓半徑為r

  則三角形面積=(a+b+c)r/2

  設三角形三邊分別為a、b、c,外接圓半徑為r

  則三角形面積=abc/4r

  已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)

  | a b 1 |

  S△=1/2 * | c d 1 |

  | e f 1 |

  【| a b 1 |

  | c d 1 | 為三階行列式,此三角形ABC在平面直角坐標系內A(a,b),B(c,d), C(e,f),這里ABC

  | e f 1 |

  選區(qū)取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規(guī)則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小!】

  秦九韶三角形中線面積公式:

  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

  其中Ma,Mb,Mc為三角形的中線長.

  平行四邊形的面積=底×高

  梯形的面積=(上底+下底)×高÷2

  直徑=半徑×2 半徑=直徑÷2

  圓的周長=圓周率×直徑=

  圓周率×半徑×2

  圓的面積=圓周率×半徑×半徑

  長方體的表面積=

  (長×寬+長×高+寬×高)×2

  長方體的體積 =長×寬×高

  正方體的表面積=棱長×棱長×6

  正方體的體積=棱長×棱長×棱長

  圓柱的側面積=底面圓的周長×高

  圓柱的表面積=上下底面面積+側面積

  圓柱的體積=底面積×高

  圓錐的體積=底面積×高÷3

  長方體(正方體、圓柱體)

  的體積=底面積×高

1352133