2017年高考數(shù)學(xué)必考等差數(shù)列公式
等差數(shù)列是常見數(shù)列的一種,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列。以下是學(xué)習(xí)啦小編為您整理的關(guān)于2017年高考數(shù)學(xué)必考等差數(shù)列公式的相關(guān)資料,希望對(duì)您有所幫助。
高中數(shù)學(xué)知識(shí)點(diǎn):等差數(shù)列公式
等差數(shù)列公式an=a1+(n-1)d
a1為首項(xiàng),an為第n項(xiàng)的通項(xiàng)公式,d為公差
前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q則:存在am+an=ap+aq
若m+n=2p則:am+an=2ap
以上n.m.p.q均為正整數(shù)
解析:第n項(xiàng)的值an=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
前n項(xiàng)的和Sn=首項(xiàng)×n+項(xiàng)數(shù)(項(xiàng)數(shù)-1)公差/2
公差d=(an-a1)÷(n-1)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
數(shù)列為奇數(shù)項(xiàng)時(shí),前n項(xiàng)的和=中間項(xiàng)×項(xiàng)數(shù)
數(shù)列為偶數(shù)項(xiàng),求首尾項(xiàng)相加,用它的和除以2
等差中項(xiàng)公式2an+1=an+an+2其中{an}是等差數(shù)列
通項(xiàng)公式:公差×項(xiàng)數(shù)+首項(xiàng)-公差
高中數(shù)學(xué)知識(shí)點(diǎn):等差數(shù)列求和公式
若一個(gè)等差數(shù)列的首項(xiàng)為a1,末項(xiàng)為an那么該等差數(shù)列和表達(dá)式為:
S=(a1+an)n÷2
即(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
前n項(xiàng)和公式
注意:n是正整數(shù)(相當(dāng)于n個(gè)等差中項(xiàng)之和)
等差數(shù)列前N項(xiàng)求和,實(shí)際就是梯形公式的妙用:
上底為:a1首項(xiàng),下底為a1+(n-1)d,高為n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中數(shù)學(xué)知識(shí)點(diǎn):推理過(guò)程
設(shè)首項(xiàng)為 , 末項(xiàng)為 , 項(xiàng)數(shù)為 , 公差為 , 前 項(xiàng)和為 , 則有:
當(dāng)d≠0時(shí),Sn是n的二次函數(shù),(n,Sn)是二次函數(shù) 的圖象上一群孤立的點(diǎn)。利用其幾何意義可求前n項(xiàng)和Sn的最值。
注意:公式一二三事實(shí)上是等價(jià)的,在公式一中不必要求公差等于一。
求和推導(dǎo)
證明:由題意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
?、?②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](當(dāng)n為偶數(shù)時(shí))
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d這種形式表示可以發(fā)現(xiàn)括號(hào)里面的數(shù)都是一個(gè)定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差數(shù)列求和公式
Sn=na1+n(n-1)d/2; (d為公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和為 Sn
首項(xiàng) a1
末項(xiàng) an
公差d
項(xiàng)數(shù)n
表示方法
等差數(shù)列基本公式:
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=末項(xiàng)-(項(xiàng)數(shù)-1)×公差
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
差:首項(xiàng)+項(xiàng)數(shù)×(項(xiàng)數(shù)-1)×公差÷2
說(shuō)明
末項(xiàng):最后一位數(shù)
首項(xiàng):第一位數(shù)
項(xiàng)數(shù):一共有幾位數(shù)
和:求一共數(shù)的總和
本段通項(xiàng)公式
首項(xiàng)=2×和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2×和÷項(xiàng)數(shù)-首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差:a1+(n-1)d
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+……99 公差就是3-1
將a1推廣到am,則為:
d=(an-am)/n-m
基本性質(zhì)
若 m、n、p、q∈N
?、偃鬽+n=p+q,則am+an=ap+aq
?、谌鬽+n=2q,則am+an=2aq(等差中項(xiàng))
注意:上述公式中an表示等差數(shù)列的第n項(xiàng)。
2017年高考數(shù)學(xué)必考等差數(shù)列公式相關(guān)文章:
1.2017年高考數(shù)學(xué)第二輪復(fù)習(xí)的七大重點(diǎn)
2.2016高考數(shù)學(xué)必考知識(shí)點(diǎn)