高一必修數(shù)學知識歸納
高一數(shù)學必修一的學習,是大家進行高中數(shù)學學習的基礎,所以同學們必須學好這部分知識,打好數(shù)學學習的堅實基礎。下面就讓學習啦小編給大家分享一些高一必修數(shù)學知識歸納吧,希望能對你有幫助!
高一必修數(shù)學知識歸納篇一
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。
把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。
(2)元素的互異性:一個給定集合中的元素是唯一的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
?、賲^(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。
{xR|x-3>2},{x|x-3>2}
?、谡Z言描述法:例:{不是直角三角形的三角形}
?、踁enn圖:畫出一條封閉的曲線,曲線里面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關系:
(1)元素在集合里,則元素屬于集合,即:aA
(2)元素不在集合里,則元素不屬于集合,即:a¢A
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+
整數(shù)集Z
有理數(shù)集Q
實數(shù)集R
高一必修數(shù)學知識歸納篇二
1、柱、錐、臺、球的結構特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
?、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
高一必修數(shù)學知識歸納篇三
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,;當時,;當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
?、冱c斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.
?、谛苯厥剑?直線斜率為k,直線在y軸上的截距為b
?、蹆牲c式:()直線兩點,
?、芙鼐厥剑?/p>
其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解;方程組有無數(shù)解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.
看了高一必修數(shù)學知識歸納的人還看: