高1數(shù)學(xué)公式大全
高1數(shù)學(xué)公式大全
高1數(shù)學(xué)所學(xué)到的內(nèi)容中,有很多公式在考試中會應(yīng)用到,因此同學(xué)們需要牢記并能夠理解應(yīng)用,下面是學(xué)習(xí)啦小編給大家?guī)淼母?數(shù)學(xué)公式大全,希望對你有幫助。
高1數(shù)學(xué)公式
拋物線:y=ax^2+bx+c
就是y等于ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經(jīng)過原點(diǎn)
b = 0時拋物線對稱軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x+h)^2 + k
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC
| e f 1 |
圖形周長 面積 體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
圓:體積=4/3(π)(r^3)
面積=(π)(r^2)
周長=2(π)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長計(jì)算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計(jì)算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計(jì)算公式橢圓 的 長半徑*短半徑*PAI*高
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
判別式
b2-4ac=0 注:方程有兩個相等的實(shí)根
b2-4ac>0 注:方程有兩個不等的實(shí)根
b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
余弦定理
b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3