高一數(shù)學(xué)三角形余弦公式大全
余弦定理,是描述三角形中三邊長度與一個(gè)角的余弦值關(guān)系的數(shù)學(xué)定理,是高一學(xué)生學(xué)習(xí)的重點(diǎn),下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)三角形余弦公式,希望對你有幫助。
高一數(shù)學(xué)三角形余弦公式
對于邊長為a、b、c而相應(yīng)角為A、B、C的三角形,有:
a²=b²+c²-bc·cosA
b²=a²+c²-ac·cosB
c²=a²+b²-ab·cosC
也可表示為:
cosC=(a²+b²-c²)/ab
cosB=(a²+c²-b²)/ac
cosA=(c²+b²-a²)/bc
這個(gè)定理也可以通過把三角形分為兩個(gè)直角三角形來證明。
如果這個(gè)角不是兩條邊的夾角,那么三角形可能不是唯一的(邊-邊-角)。要小心余弦定理的這種歧義情況。
高一數(shù)學(xué)三角形余弦定理含義
三角形余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個(gè)邊求角的問題,若對余弦定理加以變形并適當(dāng)移于其它知識,則使用起來更為方便、靈活。直角三角形的一個(gè)銳角的鄰邊和斜邊的比值叫這個(gè)銳角的余弦值。
高一數(shù)學(xué)三角形余弦定理證明
平面向量證法(覺得這個(gè)方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本來還是由余弦定理得出來的,怎么又能反過來證明余弦定理)∵如圖,有a+b=c(平行四邊形定則:兩個(gè)鄰邊之間的對角線代表兩個(gè)鄰邊大小)
∴c·c=(a+b)·(a+b)
∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|Cos(π-θ)
(以上粗體字符表示向量)
又∵Cos(π-θ)=-Cosθ
∴c²=a²+b²-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)
再拆開,得c²=a²+b²-2abcosC
即cosC=(a2+b2-c2)/2*a*b
同理可證其他,而下面的cosC=(c2-b2-a2)/2ab就是將cosC移到左邊表示一下。
平面幾何證法
在任意△ABC中
做AD⊥BC.
∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根據(jù)勾股定理可得:
AC²=AD²+DC²
b²=(sinBc)²+(a-cosBc)²
b²=(sinB*c)²+a²-2accosB+(cosB)²c²
b²=(sinB2+cosB2)c²-2accosB+a²
b²=c²+a²-2accosB
cosB=(c²+a²-b²)/2ac
看了<高一數(shù)學(xué)三角形余弦公式大全>的人還看了:
2.高一數(shù)學(xué)正弦與余弦定理知識點(diǎn)