學好初中數(shù)學的小妙招
學好初中數(shù)學的小妙招
很多同學在學習數(shù)學的時候總會覺得遇上了瓶頸,難以突破,下面小編為大家分享一些學好初中數(shù)學的幾個妙招。
學好初中數(shù)學的幾個妙招
一、將考試的一些錯誤信息進行分類:
?、龠z憾之錯
就是分明會做,反而做錯了的題。
比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如單位混用等。
②似非之錯
理解的不夠透徹,應用得不夠自如;回答不嚴密、不完整;第一遍做對了,一改反而改錯了;或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。
?、蹮o為之錯
由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應用的問題。
一般情況下,這三類錯誤的比例是2:7:1,你也可以自己分析一下自己的三類錯誤比例。得出結論后,就知道問題出在哪里,要針對性進行解決。
02
二、出現(xiàn)這些錯誤情況的原因:
?、俦粍訉W習
許多同學有很強的依賴或懶惰的心理,只是被動的跟隨老師的慣性運轉,沒有掌握學習的主動權。表現(xiàn)在不定計劃、坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所有內容。
?、趯W不得法
老師上課一般都要講清知識點的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
③不重視基礎
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
?、軘?shù)學思維不夠寬廣
有的同學不會對知識的深度、廣度,以及各章節(jié)進行總結,并融會貫通,不會“多角度”考慮,不會“概括”、“類比”、“聯(lián)想”、“抽象”等各種方法與思維。
?、菟烙浻脖?,不能遷移知識
初中數(shù)學主要是以形象、通俗的語言方式進行表達。有些同學建立了統(tǒng)一的思維模式,就只能機械的進行操作,形成一種定勢方式。而不會加強知識的遷移,對一道題,要盡可能多想解法,多開動“腦筋”,使思維“活”起來。對一些相近的題,要善于總結,形成“一法多題”。
03
三、科學的學習方法:
學生僅僅想學是不夠的,還必須“會學”,要講究科學的學習方法,提高學習效率,才能變被動為主動。
①培養(yǎng)良好的學習習慣
良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
制定計劃明確學習目的。合理的學習計劃是推動主動學習和克服困難的內在動力。既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
課前預習是取得較好學習效果的基礎。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。
及時復習是提高效率學習的重要一環(huán)。通過反復閱讀教材,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比較。
獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所有新知識的理解和對新技能的掌握過程。
解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。做錯的作業(yè)要再做一遍,對錯誤的地方沒弄清楚要反復思考。
系統(tǒng)小結是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,提示知識間的內在聯(lián)系,以達到所有知識融會貫通的目的。
課外學習包括閱讀課外書籍與報刊,課外學習是課內學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力。
?、谥刃驖u進,防止急躁
由于學生年齡較小,閱歷有限,有些學生容易急躁,有的同學貪多求快,有的同學想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。學習是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成。學習是一項循序漸進、長期積累的過程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。
?、垩芯繉W科特點,尋找最佳學習方法
數(shù)學學科擔負著培養(yǎng)學生運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。它的特點是具有高度的抽象性、邏輯性和廣泛性,對能力要求較高。具體尋找方法因人而異,但學習的五個環(huán)節(jié):預習、上課、復習、作業(yè)、總結是少不了的。
?、芏嘟涣鳌⒍喾此冀庖桑夥只c
多和同學交流,多向老師請教,多開展變式練習,化解分化點,以達到靈活掌握知識、運用知識的目的。
只要學習科學方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學習習慣,就能順利度過學習適應期,就能在今后的數(shù)學成績突飛猛進。
04
四、學數(shù)學的幾個建議:
1、記數(shù)學筆記,特別是對概念理解的不同側面和數(shù)學規(guī)律,以及老師補充的課外知識。
2、建立數(shù)學糾錯本。
3、記憶數(shù)學規(guī)律和數(shù)學小結論。
4、與同學建立良好關系,爭做“小老師”,形成數(shù)學學習“互助組”。
5、增加數(shù)學課外閱讀,加大自學力度。
6、反復鞏固,消滅前學后忘。
7、學會總結歸類。
貫穿三年學習的9個經典解題法
1.配方法
通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和的形式解決數(shù)學問題的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法。它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經常用到它。
2.因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎。它作為數(shù)學的一個有力工具在代數(shù)、幾何、三角形等的解題中起著重要的作用。
因式分解的方法,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有利用拆項添項、求根分解、換元、待定系數(shù)等等。
3.換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4.判別式&韋達定理
一元二次方程ax²+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b²-4ac(2為平方),不僅可以用來判定根的性質,而且可以作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5.待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答出數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6.構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7.面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置輔助線,即使需要添置輔助線,也很容易考慮到。
8.幾何變換法
在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。
所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。
另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
9.反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。
用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:
是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。
導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。