八年級數(shù)學(xué)課本知識點(diǎn)
只有學(xué)習(xí)精彩,生命才精彩,只有學(xué)習(xí)成功,事業(yè)才成功。每一門科目都有自己的學(xué)習(xí)方法,但其實(shí)都是萬變不離其中的,數(shù)學(xué)作為最燒腦的科目之一,也是要記、要背、要講練的。下面是小編給大家整理的八年級數(shù)學(xué)知識點(diǎn),希望對大家有所幫助。
八年級上冊數(shù)學(xué)知識點(diǎn)總結(jié)歸納
一、全等形
1、定義:能夠完全重合的兩個(gè)圖形叫做全等圖形,簡稱全等形。
2、一個(gè)圖形經(jīng)過翻折、平移和旋轉(zhuǎn)等變換后所得到的圖形一定與原圖形全等。反之,兩個(gè)全等的圖形經(jīng)過上述變換后一定能夠互相重合。
二、全等多邊形
1、定義:能夠完全重合的多邊形叫做全等多邊形?;ハ嘀睾系狞c(diǎn)叫做對應(yīng)頂點(diǎn),互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。
2、性質(zhì):
(1)全等多邊形的對應(yīng)邊相等,對應(yīng)角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:≌。如圖,不是為:△ABC≌△ABC。讀作:三角形ABC全等于三角形ABC。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應(yīng)相等的兩三角形全等。(即SAS,邊角邊);
(2)有兩角和它們的夾邊對應(yīng)相等的兩三角形全等。(即ASA,角邊角)
(3)有兩角和其中一角的對邊對應(yīng)相等的兩三角形全等。(即AAS,角角邊)
(4)有三邊對應(yīng)相等的兩三角形全等。(即SSS,邊邊邊)
(5)有斜邊和一條直角邊對應(yīng)相等的兩直角三角形全等。(即HL,斜邊直角邊)
3、全等三角形的性質(zhì):
(1)全等三角形的對應(yīng)邊相等、對應(yīng)角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應(yīng)邊上的中線、高,對應(yīng)角的平分線都相等。
4、全等三角形的作用:
(1)用于直接證明線段相等,角相等。
(2)用于證明直線的平行關(guān)系、垂直關(guān)系等。
(3)用于測量人不能的到達(dá)的路程的長短等。
(4)用于間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用于解決有關(guān)等積等問題。
初二上數(shù)學(xué)知識點(diǎn)
同類項(xiàng)的概念:所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也叫同類項(xiàng)。
判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類項(xiàng)的兩個(gè)標(biāo)準(zhǔn):
①所含字母相同。②相同字母的次數(shù)也相同。
判斷同類項(xiàng)時(shí)與系數(shù)無關(guān),與字母排列的順序也無關(guān)。
合并同類項(xiàng)的概念:把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。
合并同類項(xiàng)的法則:同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
合并同類項(xiàng)步驟:
⑴.準(zhǔn)確的找出同類項(xiàng)。
⑵.逆用分配律,把同類項(xiàng)的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
⑶.寫出合并后的結(jié)果。
合并同類項(xiàng)時(shí)注意:
(1)如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后,結(jié)果為0。
(2)不要漏掉不能合并的項(xiàng)。
(3)只要不再有同類項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。
(4)不是同類項(xiàng)千萬不能進(jìn)行合并。
初二上冊數(shù)學(xué)一次函數(shù)知識點(diǎn)總結(jié)
一、函數(shù):
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
數(shù)學(xué)的學(xué)習(xí)方法
1、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。
2、上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。
3、首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
4、認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
5、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。
6、剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。
7、叫魚與學(xué)習(xí)(學(xué)習(xí)王站)覺得數(shù)學(xué)學(xué)習(xí)是一個(gè)長久的事情,需要持之以恒才能見到效果。
八年級數(shù)學(xué)課本知識點(diǎn)相關(guān)文章:
★ 八年級上冊數(shù)學(xué)課本的知識點(diǎn)歸納
★ 人教版八年級上冊數(shù)學(xué)課本知識點(diǎn)歸納
★ 人教版八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)
★ 八年級下冊數(shù)學(xué)知識點(diǎn)整理
★ 人教版八年級上冊數(shù)學(xué)課本知識點(diǎn)歸納(2)
★ 八年級數(shù)學(xué)知識點(diǎn)整理歸納
★ 八年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)人教版