數(shù)學(xué)必修一知識(shí)提綱
數(shù)學(xué)對(duì)于很多同學(xué)來說,都是一座難以逾越的大山,那么學(xué)數(shù)學(xué)的方法技巧有什么呢?其實(shí)做好復(fù)習(xí)提綱就行了,下面小編給大家分享一些數(shù)學(xué)必修一知識(shí)提綱,希望能夠幫助大家,歡迎閱讀!
數(shù)學(xué)必修一知識(shí)提綱
一、集合
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。
數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。
比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集NxN+
整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。
集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無序性
指集合中的`元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
二、函數(shù)
1.函數(shù)的奇偶性。
(1)若f(x)是偶函數(shù),那么f(x)=f(-x)。
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性。
(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。
2.復(fù)合函數(shù)的有關(guān)問題。
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。
3.函數(shù)圖像(或方程曲線的對(duì)稱性)。
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上。
(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然。
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0。
(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱。
4.函數(shù)的周期性。
(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù)。
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù)。
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù)。
5.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn)。
(1)A中元素必須都有象且。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
7.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論。
(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。
(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù)。
(4)周期函數(shù)不存在反函數(shù)。
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性。
(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
8.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合。
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系。
9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題。
10.恒成立問題的處理方法。
(1)分離參數(shù)法。
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
學(xué)習(xí)數(shù)學(xué)小竅門
建立數(shù)學(xué)糾錯(cuò)本。
把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
限時(shí)訓(xùn)練。
可以找一組題(比如10道選擇題),爭(zhēng)取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。
調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。
學(xué)數(shù)學(xué)的用處
第一,實(shí)際生活中數(shù)學(xué)學(xué)得好可以幫助你在工作上解決工程類或財(cái)務(wù)類的技術(shù)問題。就大多數(shù)情況來看,不能解決技術(shù)問題的人不僅收入較差而且還要到基層去從事低等體力勞動(dòng),能解決技術(shù)問題的人就可以拿高工資在辦公室當(dāng)工程師或者財(cái)務(wù)人員。
第二,數(shù)學(xué)可以使你的大腦變得更加聰明,增加你思維的嚴(yán)謹(jǐn)性,另外,數(shù)學(xué)對(duì)你其它科目的學(xué)習(xí)也有很大作用。
第三,數(shù)學(xué)無處不在,工作學(xué)習(xí)中都用得著,例如日常逛街買東西都是和數(shù)學(xué)有關(guān)的,這時(shí)候才能體會(huì)到學(xué)習(xí)數(shù)學(xué)的好處。
數(shù)學(xué)必修一知識(shí)提綱相關(guān)文章:
★ 高中數(shù)學(xué)必修一復(fù)習(xí)提綱
★ 2021高中數(shù)學(xué)必修一復(fù)習(xí)提綱
★ 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 人教版高中數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高一數(shù)學(xué)必修一的知識(shí)點(diǎn)
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理