八年級上冊數(shù)學(xué)復(fù)習(xí)提綱滬科版
有很多同學(xué)數(shù)學(xué)學(xué)不好就是因?yàn)閷Ω拍詈凸讲粔蛑匾?,所以做好這些知識(shí)點(diǎn)的提綱是很有必要的,下面小編給大家分享一些八年級上冊數(shù)學(xué)復(fù)習(xí)提綱滬科版,希望能夠幫助大家,歡迎閱讀!
八年級上冊數(shù)學(xué)復(fù)習(xí)提綱滬科版
(一)運(yùn)用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
①項(xiàng)數(shù):三項(xiàng)
②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。
③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
學(xué)好數(shù)學(xué)的關(guān)鍵就在于要適時(shí)適量地進(jìn)行總結(jié)歸類,接下來小編就為大家整理了這篇人教版八年級數(shù)學(xué)全等三角形知識(shí)點(diǎn)講解,希望可以對大家有所幫助。
全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質(zhì):角平分線平分這個(gè)角,角平分線上的點(diǎn)到角兩邊的距離相等
角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
人教版八年級數(shù)學(xué)全等三角形知識(shí)點(diǎn)講解就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃危蚋淖兎?hào),直到可確定多項(xiàng)式的公因式.
2.運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1)必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于
一次項(xiàng)的系數(shù).
2)將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:
①列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;
②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù).
3)將原多項(xiàng)式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式.
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.
4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.
6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減.
(八)分?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.
4.通分的依據(jù):分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p.
9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào).
10.對于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化.
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.
(九)含有字母系數(shù)的一元一次方程
含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零。
數(shù)學(xué)答題技巧
一、答題先易后難
原則上應(yīng)從前往后答題,因?yàn)樵诳碱}的設(shè)計(jì)中一般都是按照先易后難的順序設(shè)計(jì)的。先答簡單、易做的題,有助于緩解緊張情緒,同時(shí)也避免因會(huì)做的題目沒有做完而造成的失分。如果在實(shí)際答卷中確有個(gè)別知識(shí)點(diǎn)遺忘可以“跳”過去,先做后面的題。
二、答卷仔細(xì)審題穩(wěn)中求快
最簡章的題目可以看一遍,一般的題目至少要看兩遍。對于大多數(shù)學(xué)生來說,答題時(shí)間比較緊,尤其是最后兩道題占用的時(shí)間較多,很多考生檢查的時(shí)間較少。所以得分的高低往往取決于第一次的答題上。另外,像解方程、求函數(shù)解析式等題應(yīng)先檢查再向后做。
三、答數(shù)學(xué)卷要注意陷阱
1、答題時(shí)需注意題中的要求。例如、科學(xué)計(jì)數(shù)法在題中是對哪一個(gè)數(shù)據(jù)進(jìn)行科學(xué)計(jì)數(shù)要求保留幾位有效數(shù)字等等。
2、警惕考題中的“零”陷阱。這類題也是考生們常做錯(cuò)的題,常見的有分式的分母“不為零”;一元二次方程的二項(xiàng)系數(shù)“不為零”(注意有沒有強(qiáng)調(diào)是一元二次方程);函數(shù)中有關(guān)系數(shù)“不為零”等等。
3、注意兩種情況的問題,例如等腰三角形、直角三角形、高在形內(nèi)、形外、兩三角形相似、兩圓相交、相離、相切,點(diǎn)在射線上運(yùn)動(dòng)等。
數(shù)學(xué)解題技巧
1、直接推演法
直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法。
2、驗(yàn)證法
由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
3、特殊元素法
用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
八年級上冊數(shù)學(xué)復(fù)習(xí)提綱滬科版相關(guān)文章:
★ 滬科版八年級上冊數(shù)學(xué)復(fù)習(xí)提綱
★ 滬科版八年級數(shù)學(xué)上冊知識(shí)點(diǎn)
★ 八年級上冊數(shù)學(xué)滬科版復(fù)習(xí)提綱
★ 八年級上冊數(shù)學(xué)復(fù)習(xí)提綱人教版
★ 八年級數(shù)學(xué)滬科版知識(shí)點(diǎn)