七年級數學書知識點總結
對世界上的一切學問與知識的掌握也并非難事,只要持之以恒地學習,努力掌握規(guī)律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恒。下面是小編給大家整理的一些七年級數學的知識點,希望對大家有所幫助。
初中一年級數學上冊知識點
二元一次方程組
1.二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對于一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
七年級下冊數學知識點
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發(fā)生的事件。也就是指該事件每次都完全沒有機會發(fā)生,即發(fā)生的可能性為零。
4、不確定事件:事先無法肯定會不會發(fā)生的事件,也就是說該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的可能性在0和1之間。
二、等可能性:是指幾種事件發(fā)生的可能性相等。
1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現(xiàn)的結果數/所有可能出現(xiàn)的結果數。
2、必然事件發(fā)生的概率為1,記作P(必然事件)=1;
3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;
4、不確定事件發(fā)生的概率在0—1之間,記作0
三、幾何概率
1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發(fā)生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的關系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
七年級數學重要知識點
統(tǒng)計
科學記數法:一個大于10的數可以表示成A.10N的形式,其中1小于等于A小于10,N是正整數。
扇形統(tǒng)計圖:①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。②扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數與360度的比。
各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
近似數字和有效數字:①測量的結果都是近似的。②利用四舍五入法取一個數的近似數時,四舍五入到哪一位,就說這個近似數精確到哪一位。③對于一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
平均數:對于N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X(上邊一橫)。
加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。
中位數與眾數:①N個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。②一組數據中出現(xiàn)次數的那個數據叫做這個組數據的眾數。③優(yōu)劣:平均數:所有數據參加運算,能充分利用數據所提供的信息,因此在現(xiàn)實生活中常用,但容易受極端值影響;中位數:計算簡單,受極端值影響少,但不能充分利用所有數據的信息;眾數:各個數據如果重復次數大致相等時,眾數往往沒有特別的意義。
調查:①為了一定的目的而對考察對象進行的全面調查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。②從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體中抽取的一部分個體叫做總體的一個樣本。③抽樣調查只考察總體中的一小部分個體,因此他的優(yōu)點是調查范圍小,節(jié)省時間,人力,物力和財力,但其調查結果往往不如普查得到的結果準確。為了獲得較為準確的調查結果,抽樣時要主要樣本的代表性和廣泛性。
頻數與頻率:①每個對象出現(xiàn)的次數為頻數,而每個對象出現(xiàn)的次數與總次數的比值為頻率。②當收集的數據連續(xù)取值時,我們通常先將數據適當分組,然后再繪制頻數分布直方圖。