高二數(shù)學(xué)哪些個(gè)知識(shí)點(diǎn)
學(xué)習(xí)方法上一旦養(yǎng)成習(xí)慣,就會(huì)感到不預(yù)習(xí)就無(wú)法聽好課,不復(fù)習(xí)就不能做好作業(yè)。這種良好的學(xué)習(xí)習(xí)慣會(huì)大大提高學(xué)習(xí)效率,提高學(xué)習(xí)質(zhì)量。而這種良好的學(xué)習(xí)習(xí)慣是長(zhǎng)期按照學(xué)習(xí)計(jì)劃進(jìn)行學(xué)習(xí)的結(jié)果。下面是小編給大家?guī)?lái)的高二數(shù)學(xué)知識(shí)點(diǎn),希望大家能夠喜歡!
高二數(shù)學(xué)知識(shí)點(diǎn)1
有界性
設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無(wú)界。
單調(diào)性
設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D。如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變。
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個(gè)雙射映射。
連續(xù)性
在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性)。
高二數(shù)學(xué)知識(shí)點(diǎn)2
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會(huì)發(fā)生的事件,叫做相對(duì)于條件S的不可能事件.
3.在條件SS的隨機(jī)事件.
二、概率和頻率
1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).
2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA
nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
3.對(duì)于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
三、事件的關(guān)系與運(yùn)算
四、概率的幾個(gè)基本性質(zhì)
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對(duì)立事件的概率:
若事件A與事件B互為對(duì)立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二數(shù)學(xué)知識(shí)點(diǎn)3
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
①k=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
高二數(shù)學(xué)哪些個(gè)知識(shí)點(diǎn)相關(guān)文章:
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)整理
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)