高二數(shù)學文科必學知識點
自己應該清楚運用什么方法學習各科知識對學習效果是最佳或最適合的。如果你在高二階段還對自己的學習一頭霧水,你在高二的學習就很容易出現(xiàn)事倍功半的效果。以下是小編給大家整理的高二數(shù)學文科必學知識點,希望大家能夠喜歡!
高二數(shù)學文科必學知識點1
簡單隨機抽樣
1.總體和樣本
在統(tǒng)計學中,把研究對象的全體叫做總體.
把每個研究對象叫做個體.
把總體中個體的總數(shù)叫做總體容量.
為了研究總體的有關性質(zhì),一般從總體中隨機抽取一部分:
研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機抽樣常用的方法:
抽簽法;隨機數(shù)表法;計算機模擬法;使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對象群體中的每一個對象編號;
(2)準備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調(diào)查
例:請調(diào)查你所在的學校的學生做喜歡的體育活動情況。
5.隨機數(shù)表法:
例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。
系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
分層抽樣
1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準:
(1)以調(diào)查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
3.分層的比例問題:
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結(jié)構(gòu)。
用樣本的數(shù)字特征估計總體的數(shù)字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍
(3)一組數(shù)據(jù)中的值和最小值對標準差的影響,區(qū)間的應用;
“去掉一個分,去掉一個最低分”中的科學道理
兩個變量的線性相關
1、概念:
(1)回歸直線方程(2)回歸系數(shù)
2.最小二乘法
3.直線回歸方程的應用
(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系
(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
(3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
4.應用直線回歸的注意事項
(1)做回歸分析要有實際意義;
(2)回歸分析前,先作出散點圖;
(3)回歸直線不要外延。
高二數(shù)學文科必學知識點2
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質(zhì)上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
高二數(shù)學文科必學知識點3
拋物線的性質(zhì):
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
焦半徑:
焦半徑:拋物線y2=2px(p>0)上一點P(x0,y0)到焦點Fè???÷?
p2,0的距離|PF|=x0+p2.
求拋物線方程的方法:
(1)定義法:根據(jù)條件確定動點滿足的幾何特征,從而確定p的值,得到拋物線的標準方程.
(2)待定系數(shù)法:根據(jù)條件設出標準方程,再確定參數(shù)p的值,這里要注意拋物線標準方程有四種形式.從簡單化角度出發(fā),焦點在x軸的,設為y2=ax(a≠0),焦點在y軸的,設為x2=by(b≠0).