高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)
可以說(shuō),學(xué)習(xí)目標(biāo)是你學(xué)習(xí)的旗幟和方向,學(xué)習(xí)目標(biāo)越高,學(xué)習(xí)動(dòng)力就會(huì)越大,但是一旦學(xué)習(xí)目標(biāo)沒(méi)有達(dá)到,所遭受的打擊也會(huì)越大;以下是小編給大家整理的高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn),希望能助你一臂之力!
高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)1
一、變量間的相關(guān)關(guān)系
1.常見(jiàn)的兩變量之間的關(guān)系有兩類(lèi):一類(lèi)是函數(shù)關(guān)系,另一類(lèi)是相關(guān)關(guān)系;與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.
2.從散點(diǎn)圖上看,點(diǎn)分布在從左下角到右上角的區(qū)域內(nèi),兩個(gè)變量的這種相關(guān)關(guān)系稱(chēng)為正相關(guān),點(diǎn)分布在左上角到右下角的區(qū)域內(nèi),兩個(gè)變量的相關(guān)關(guān)系為負(fù)相關(guān).
二、兩個(gè)變量的線性相關(guān)
1.從散點(diǎn)圖上看,如果這些點(diǎn)從整體上看大致分布在通過(guò)散點(diǎn)圖中心的一條直線附近,稱(chēng)兩個(gè)變量之間具有線性相關(guān)關(guān)系,這條直線叫回歸直線.
當(dāng)r>0時(shí),表明兩個(gè)變量正相關(guān);
當(dāng)r<0時(shí),表明兩個(gè)變量負(fù)相關(guān).
r的絕對(duì)值越接近于1,表明兩個(gè)變量的線性相關(guān)性越強(qiáng).r的絕對(duì)值越接近于0時(shí),表明兩個(gè)變量之間幾乎不存在線性相關(guān)關(guān)系.通常|r|大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)性.
三、解題方法
1.相關(guān)關(guān)系的判斷方法一是利用散點(diǎn)圖直觀判斷,二是利用相關(guān)系數(shù)作出判斷.
2.對(duì)于由散點(diǎn)圖作出相關(guān)性判斷時(shí),若散點(diǎn)圖呈帶狀且區(qū)域較窄,說(shuō)明兩個(gè)變量有一定的線性相關(guān)性,若呈曲線型也是有相關(guān)性.
3.由相關(guān)系數(shù)r判斷時(shí)|r|越趨近于1相關(guān)性越強(qiáng).
高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)2
在中國(guó)古代把數(shù)學(xué)叫算術(shù),又稱(chēng)算學(xué),最后才改為數(shù)學(xué)。
1.任意角
(1)角的分類(lèi):
①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角.
②按終邊位置不同分為象限角和軸線角.
(2)終邊相同的角:
終邊與角相同的角可寫(xiě)成+k360(kZ).
(3)弧度制:
①1弧度的角:把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角.
②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時(shí)所對(duì)圓弧的長(zhǎng),r為半徑.
③用弧度做單位來(lái)度量角的制度叫做弧度制.比值與所取的r的大小無(wú)關(guān),僅與角的大小有關(guān).
④弧度與角度的換算:360弧度;180弧度.
⑤弧長(zhǎng)公式:l=||r,扇形面積公式:S扇形=lr=||r2.
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設(shè)是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).
(2)三角函數(shù)在各象限內(nèi)的符號(hào)口訣是:一全正、二正弦、三正切、四余弦.
3.三角函數(shù)線
設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過(guò)P作PM垂直于x軸于M.由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長(zhǎng)線相交于點(diǎn)T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.
高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)3
1.求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2.求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號(hào)并由表格判斷極值。
3.求函數(shù)的值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。
求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。
4.解決不等式的有關(guān)問(wèn)題:
(1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。
高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)相關(guān)文章:
★ 高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)考試必考知識(shí)點(diǎn)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)2020總結(jié)
★ 高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱