高二必修二數(shù)學(xué)知識(shí)點(diǎn)及復(fù)習(xí)提綱
高中數(shù)學(xué)知識(shí)比較多,高中數(shù)學(xué)必修二需要記憶的知識(shí)點(diǎn)原理也很多,下面小編為大家?guī)?lái)高二必修二數(shù)學(xué)知識(shí)點(diǎn)及復(fù)習(xí)提綱,希望對(duì)您有幫助,歡迎參考閱讀!
高二必修二數(shù)學(xué)知識(shí)點(diǎn)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。
2。導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
①k=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3。常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:
4。導(dǎo)數(shù)的四則運(yùn)算法則:
5。導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
高二必修二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
(1)數(shù)列的概念和簡(jiǎn)單表示法
了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類(lèi)函數(shù).
(2)等差數(shù)列、等比數(shù)列
理解等差數(shù)列、等比數(shù)列的概念.
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題
會(huì)從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過(guò)程.
會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
寫(xiě)出點(diǎn)M的集合;
列出方程=0;
化簡(jiǎn)方程為最簡(jiǎn)形式;
檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高二必修二數(shù)學(xué)知識(shí)點(diǎn)及復(fù)習(xí)提綱相關(guān)文章:
★ 高二數(shù)學(xué)必修書(shū)的基礎(chǔ)知識(shí)點(diǎn)分析
★ 高中數(shù)學(xué)填空題的常用解題方法與必修二知識(shí)點(diǎn)全面總結(jié)
★ 人教版高二數(shù)學(xué)上冊(cè)必修知識(shí)點(diǎn)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 數(shù)學(xué)必修二第一章知識(shí)點(diǎn)
★ 高一數(shù)學(xué)必修二第二章知識(shí)點(diǎn)歸納
★ 2022高一必修二數(shù)學(xué)知識(shí)點(diǎn)歸納