国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

2023高二數(shù)學(xué)教案設(shè)計

時間: 淑娟0 分享

數(shù)學(xué)教案怎么寫?課后附有關(guān)的小資料以備老師在教學(xué)時選用,解除老師到處找資料之苦。今天小編在這給大家整理了高二數(shù)學(xué)教案大全,接下來隨著小編一起來看看吧!

高二數(shù)學(xué)教案(一)

《三角函數(shù)的圖像與性質(zhì)》

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1、知識與技能

(1)了解周期現(xiàn)象在現(xiàn)實中廣泛存在;(2)感受周期現(xiàn)象對實際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數(shù)定義進行簡單運用。

2、過程與方法

通過創(chuàng)設(shè)情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實踐中加以應(yīng)用。

3、情感態(tài)度與價值觀

通過本節(jié)的學(xué)習(xí),使同學(xué)們對周期現(xiàn)象有一個初步的認(rèn)識,感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會運用聯(lián)系的觀點認(rèn)識事物。

教學(xué)重難點

重點:感受周期現(xiàn)象的存在,會判斷是否為周期現(xiàn)象。

難點:周期函數(shù)概念的理解,以及簡單的應(yīng)用。

教學(xué)工具

投影儀

教學(xué)過程

【創(chuàng)設(shè)情境,揭示課題】

同學(xué)們:我們生活在海南島非常幸福,可以經(jīng)常看到大海,陶冶我們的情操。眾所周知,海水會發(fā)生潮汐現(xiàn)象,大約在每一晝夜的時間里,潮水會漲落兩次,這種現(xiàn)象就是我們今天要學(xué)到的周期現(xiàn)象。再比如,[取出一個鐘表,實際操作]我們發(fā)現(xiàn)鐘表上的時針、分針和秒針每經(jīng)過一周就會重復(fù),這也是一種周期現(xiàn)象。所以,我們這節(jié)課要研究的主要內(nèi)容就是周期現(xiàn)象與周期函數(shù)。(板書課題)

【探究新知】

1.我們已經(jīng)知道,潮汐、鐘表都是一種周期現(xiàn)象,請同學(xué)們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時間會重復(fù)出現(xiàn),這也是一種周期現(xiàn)象。請你舉出生活中存在周期現(xiàn)象的例子。(單擺運動、四季變化等)

(板書:一、我們生活中的周期現(xiàn)象)

2.那么我們怎樣從數(shù)學(xué)的角度研究周期現(xiàn)象呢?教師引導(dǎo)學(xué)生自主學(xué)習(xí)課本P3——P4的相關(guān)內(nèi)容,并思考回答下列問題:

①如何理解“散點圖”?

②圖1-1中橫坐標(biāo)和縱坐標(biāo)分別表示什么?

③如何理解圖1-1中的“H/m”和“t/h”?

④對于周期函數(shù)的定義,你的理解是怎樣?

以上問題都由學(xué)生來回答,教師加以點撥并總結(jié):周期函數(shù)定義的理解要掌握三個條件,即存在不為0的常數(shù)T;x必須是定義域內(nèi)的任意值;f(x+T)=f(x)。

(板書:二、周期函數(shù)的概念)

3.[展示投影]練習(xí):

(1)已知函數(shù)f(x)滿足對定義域內(nèi)的任意x,均存在非零常數(shù)T,使得f(x+T)=f(x)。

求f(x+2T),f(x+3T)

略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)

f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)

本題小結(jié),由學(xué)生完成,總結(jié)出“周期函數(shù)的周期有無數(shù)個”,教師指出一般情況下,為避免引起混淆,特指最小正周期。

(2)已知函數(shù)f(x)是R上的周期為5的周期函數(shù),且f(1)=2005,求f(11)

略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005

(3)已知奇函數(shù)f(x)是R上的函數(shù),且f(1)=2,f(x+3)=f(x),求f(8)

略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2

【鞏固深化,發(fā)展思維】

1.請同學(xué)們先自主學(xué)習(xí)課本P4倒數(shù)第五行——P5倒數(shù)第四行,然后各個學(xué)習(xí)小組之間展開合作交流。

2.例題講評

例1.地球圍繞著太陽轉(zhuǎn),地球到太陽的距離y是時間t的函數(shù)嗎?如果是,這個函數(shù)

y=f(t)是不是周期函數(shù)?

例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時間t的函數(shù),y=g(t)。根據(jù)鐘擺的知識,容易說明g(t+T)=g(t),其中T為鐘擺擺動一周(往返一次)所需的時間,函數(shù)y=g(t)是周期函數(shù)。若以鐘擺偏離鉛垂線MN的角θ的度數(shù)為變量,根據(jù)物理知識,擺心A到鉛垂線MN的距離y也是θ的周期函數(shù)。

例3.圖1-5(見課本)是水車的示意圖,水車上A點到水面的距離y是時間t的函數(shù)。假設(shè)水車5min轉(zhuǎn)一圈,那么y的值每經(jīng)過5min就會重復(fù)出現(xiàn),因此,該函數(shù)是周期函數(shù)。

3.小組課堂作業(yè)

(1)課本P6的思考與交流

(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?

五、歸納整理,整體認(rèn)識

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

六、布置作業(yè)

1.作業(yè):習(xí)題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.

課后小結(jié)

歸納整理,整體認(rèn)識

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后習(xí)題

作業(yè)

1.作業(yè):習(xí)題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.

板書

高二數(shù)學(xué)教案(二)

《任意角和弧度制》

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

一、知識與技能

(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應(yīng)關(guān)系.(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.

二、過程與方法

創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式.以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器.

三、情態(tài)與價值

通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.

教學(xué)重難點

重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.

難點:理解弧度制定義,弧度制的運用.

教學(xué)工具

投影儀等

教學(xué)過程

一、創(chuàng)設(shè)情境,引入新課

師:有人問:??诘饺齺営卸噙h(yuǎn)時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.

在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.

二、講解新課

1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.

2.弧度制的定義

長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.

我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負(fù)角的弧度數(shù)是一個負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定.

角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng).

四、課堂小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

五、作業(yè)布置

作業(yè):習(xí)題1.1A組第7,8,9題.

課后小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

課后習(xí)題

作業(yè):習(xí)題1.1A組第7,8,9題.

板書

高二數(shù)學(xué)教案(三)

簡單的線性規(guī)劃

教學(xué)目標(biāo)

鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域,能用此來求目標(biāo)函數(shù)的最值.

重點難點

理解二元一次不等式表示平面區(qū)域是教學(xué)重點.

如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點.

教學(xué)步驟

【新課引入】

我們知道,二元一次不等式和二元一次不等式組都表示平面區(qū)域,在這里開始,教學(xué)又翻開了新的一頁,在今后的學(xué)習(xí)中,我們可以逐步看到它的運用.

【線性規(guī)劃】

先討論下面的問題

設(shè),式中變量x、y滿足下列條件

求z的值和最小值.

我們先畫出不等式組①表示的平面區(qū)域,如圖中內(nèi)部且包括邊界.點(0,0)不在這個三角形區(qū)域內(nèi),當(dāng)時,,點(0,0)在直線上.

作一組和平等的直線

可知,當(dāng)l在的右上方時,直線l上的點滿足.

即,而且l往右平移時,t隨之增大,在經(jīng)過不等式組①表示的三角形區(qū)域內(nèi)的點且平行于l的直線中,以經(jīng)過點A(5,2)的直線l,所對應(yīng)的t,以經(jīng)過點的直線,所對應(yīng)的t最小,所以

在上述問題中,不等式組①是一組對變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,所以又稱線性約束條件.

是欲達到值或最小值所涉及的變量x、y的解析式,叫做目標(biāo)函數(shù),由于又是x、y的解析式,所以又叫線性目標(biāo)函數(shù),上述問題就是求線性目標(biāo)函數(shù)在線性約束條件①下的值和最小值問題.

線性約束條件除了用一次不等式表示外,有時也有一次方程表示.

一般地,求線性目標(biāo)函數(shù)在線性約束條件下的值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題,滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域,在上述問題中,可行域就是陰影部分表示的三角形區(qū)域,其中可行解(5,2)和(1,1)分別使目標(biāo)函數(shù)取得值和最小值,它們都叫做這個問題的解.

2020高二數(shù)學(xué)教案設(shè)計相關(guān)文章

2020高中數(shù)學(xué)教學(xué)教案3篇

2020高中數(shù)學(xué)教案范文

高二數(shù)學(xué)教案(人教版)

2020高中數(shù)學(xué)等差數(shù)列教案

2020高二數(shù)學(xué)教學(xué)工作計劃

2020高二上學(xué)期數(shù)學(xué)教學(xué)工作計劃5篇

2020高二數(shù)學(xué)教師的教學(xué)工作計劃5篇

2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計大全

2020高中數(shù)學(xué)教學(xué)計劃

2020高中數(shù)學(xué)冪函數(shù)教學(xué)教案

494821