高三數(shù)學(xué)必考知識點框架整合
總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,總結(jié)一般是怎么寫的呢?下面是小編給大家?guī)淼臄?shù)學(xué)必考知識點框架整合,以供大家參考!
高三數(shù)學(xué)必考知識點框架整合
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即
這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復(fù)數(shù)a+bi(a、b∈R),當且僅當b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
高三數(shù)學(xué)知識點大全
1.等差數(shù)列的定義
如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項公式
若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.
3.等差中項
如果A=(a+b)/2,那么A叫做a與b的等差中項.
4.等差數(shù)列的常用性質(zhì)
(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數(shù)列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.
(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數(shù),則S偶-S奇=nd/2;
若n為奇數(shù),則S奇-S偶=a中(中間項).
注意:
一個推導(dǎo)
利用倒序相加法推導(dǎo)等差數(shù)列的前n項和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
兩個技巧
已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.
(1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設(shè)元.
四種方法
等差數(shù)列的判斷方法
(1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);
(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項公式法:驗證an=pn+q;
(4)前n項和公式法:驗證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.
高三數(shù)學(xué)上冊知識點大全
反三角函數(shù)主要是三個:
y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線條;
y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍色線條;
y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;
sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx
其他公式:
三角函數(shù)其他公式
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
當x∈[—π/2,π/2]時,有arcsin(sinx)=x
當x∈[0,π],arccos(cosx)=x
x∈(—π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x〉0,arctanx=π/2-arctan1/x,arccotx類似
若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)
高三數(shù)學(xué)必考知識點框架整合相關(guān)文章:
★ 7月教師工作計劃
★ 2022學(xué)校工作總結(jié)個人報告(10篇)