高中數(shù)學最易混淆知識點
高中數(shù)學課程一直是高考的必考科目,占有很高的教學地位。高中數(shù)學一直是理科生眼中比較難的一門學科,其實高中數(shù)學有許多易混淆知識點,下面是小編為大家精心推薦高中數(shù)學最易混淆的一些知識點,希望能夠對大家有所幫助。
高中數(shù)學最易混淆知識點
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調遞增,則一定存在反函數(shù),且反函數(shù)也單調遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調.例如:.
10.你熟練地掌握了函數(shù)單調性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法
11.求函數(shù)單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應用函數(shù)的單調性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數(shù)。
26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
27.數(shù)列單調性問題能否等同于對應函數(shù)的單調性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28.應用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數(shù)學方法用來證明時也成立。
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數(shù)的定義及單位圓內的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質.你會寫三角函數(shù)的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經過怎樣的變換得到嗎?
36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
高考數(shù)學主要考點
一:集合
考點1:集合的基本運算
考點2:集合之間的關系
二:函數(shù)
考點3:函數(shù)及其表示
考點4:函數(shù)的基本性質
考點5:一次函數(shù)與二次函數(shù).
考點6:指數(shù)與指數(shù)函數(shù)
考點7:對數(shù)與對數(shù)函數(shù)
考點8:冪函數(shù)
考點9:函數(shù)的圖像
考點10:函數(shù)的值域與最值
考點11:函數(shù)的應用
三:立體幾何初步
考點12:空間幾何體的結構、三視圖和直視圖
考點13:空間幾何體的表面積和體積
考點14:點、線、面的位置關系
考點15:直線、平面平行的性質與判定
考點16:直線、平面垂直的判定及其性質
考點17:空間中的角
考點18:空間向量
四:直線與圓
考點19:直線方程和兩條直線的關系
考點20:圓的方程
考點21:直線與圓、圓與圓的位置關系
五:算法初步與框圖
考點22:算法初步與框圖
六:三角函數(shù)
考點23:任意角的三角函數(shù)、同三角函數(shù)和誘導公式
考點24:三角函數(shù)的圖像和性質
考點25:三角函數(shù)的最值與綜合運用
考點26:三角恒等變換
考點27:解三角形
七:平面向量
考點28:平面向量的概念與運算
考點29:向量的運用
八:數(shù)列
考點30:數(shù)列的概念及其表示
考點31:等差數(shù)列
考點32:等比數(shù)列
考點33:數(shù)列的綜合運用
九:不等式
考點34:不等關系與不等式
考點35:不等式的解法
考點36:線性規(guī)劃
考點37:不等式的綜合運用
十:計數(shù)原理
考點38:排列與組合
考點39:二項式定理
十一:概率與統(tǒng)計
考點40:古典概型與幾何概型
考點41:概率
考點42:統(tǒng)計與統(tǒng)計案例
十二:常用邏輯用語
考點43:簡單邏輯
考點44:充分條件與必要條件
十三:圓錐曲線
考點45:橢圓
考點46:雙曲線
考點47:拋物線
考點48:直線與圓錐曲線的位置關系
考點49:圓錐曲線方程
考點50:圓錐曲線的綜合問題
十四:導數(shù)及其應用
考點51:導數(shù)與積分
考點52:導數(shù)的應用
十五:推理與證明
考點53:合情推理與演繹推理
考點54:直接證明與間接證明
考點55:數(shù)學歸納法
十六:數(shù)系的擴充與復數(shù)的引入
考點56:數(shù)系的擴充與復數(shù)的引入
十七:選考內容
考點57:幾何證明選講
考點58:坐標系與參數(shù)方程
考點59:不等式選講
學習高中數(shù)學的方法
1、課前預習:首先上課前要做預習,課前預習能提前了解將要學習的知識。
2、記筆記:指的是課堂筆記,每節(jié)課時間有限,老師一般講的都是精華部分。
3、課后復習:通預習一樣,也是行之有效的方法。
4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。
5、學會歸類總結:學習數(shù)學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經常出錯的題目集中在一起。
7、寫考試總結:考試總結可以幫助找出學習之中不足之處,以及知識的薄弱環(huán)節(jié)。
8、培養(yǎng)學習興趣:興趣是最好的老師,只有有了興趣才會自主自發(fā)的進行學習,學習效率才會提高。