高三年級(jí)數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)
機(jī)會(huì)從不會(huì)“失掉”,你失掉了,自有別人會(huì)得到。不要凡事在天,守株待兔,更不要寄希望于“機(jī)會(huì)”。機(jī)會(huì)只不過是相對(duì)于充分準(zhǔn)備而又善于創(chuàng)造機(jī)會(huì)的人而言的。沒有機(jī)會(huì),就要?jiǎng)?chuàng)造機(jī)會(huì);有了機(jī)會(huì),就要巧妙地抓住機(jī)會(huì),而高考就是你走上成功之路的第一個(gè)機(jī)會(huì)。小編為你整理了高三年級(jí)數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)希望對(duì)你有幫助!
【一】
一次函數(shù)的定義
一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。
函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡單明了,能夠準(zhǔn)確地反映整個(gè)變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。
一次函數(shù)的性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)
注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
a)k不為0
b)x的指數(shù)是1
c)b取任意實(shí)數(shù)
一次函數(shù)y=kx+b的圖像是經(jīng)過(0,b)和(-b/k,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個(gè)單位長度得到。(當(dāng)b>0時(shí),向上平移;b<0時(shí),向下平移)
【二】
不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問題。
【三】
變化前的點(diǎn)坐標(biāo)(x,y)
坐標(biāo)變化
變化后的點(diǎn)坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個(gè)單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個(gè)單位長度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個(gè)單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個(gè)單位長度伸長橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標(biāo)同時(shí)擴(kuò)大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標(biāo)同時(shí)縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點(diǎn)的坐標(biāo),往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點(diǎn)所在的象限,醒上相應(yīng)的符號(hào)。求坐標(biāo)分兩種情況:(1)求交點(diǎn),如直線與直線的交點(diǎn);(2)求距離,再將距離換算成坐標(biāo),通常作x軸或y軸的垂線,再解直角三角形。
高三年級(jí)數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)相關(guān)文章:
2.高三年級(jí)數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)大全
3.高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理總結(jié)
4.高三數(shù)學(xué)易錯(cuò)點(diǎn)集錦
5.高考數(shù)學(xué)易錯(cuò)點(diǎn)及重要知識(shí)點(diǎn)歸納
6.高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)小結(jié)
7.高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)
8.高三數(shù)學(xué)知識(shí)點(diǎn)梳理