高考數(shù)學(xué)四大得分技巧及專項(xiàng)練習(xí)題
高考即將到來,你的數(shù)學(xué)學(xué)得怎么樣了,高考數(shù)學(xué)在答題中有什么方法快速拿分呢?下面就是小編給大家?guī)淼?,希望大家喜歡!
高考數(shù)學(xué)四大搶分技巧
1、套:常規(guī)模式直接套
拿到一道高考題,你的第一反應(yīng)是什么?迅速生成常規(guī)方案,也即第一方案。為什么要有套路,因?yàn)?0%的高考題是基本的、穩(wěn)定的,考查運(yùn)算的敏捷性,沒有套路,就沒有速度。
在理解題意后,立即思考問題屬于哪一學(xué)科、哪一章節(jié)?與這一章節(jié)的哪個(gè)類型比較接近?解決這個(gè)類型有哪些方法?哪個(gè)方法可以首先拿來試用?這樣一想,下手的地方就有了,前進(jìn)的方向也大體確定了。這就是高考解題中的模式識(shí)別。
運(yùn)用模式識(shí)別可以簡捷回答解題中的兩個(gè)基本問題,從何處下手?向何方前進(jìn)?我們說,就從辨認(rèn)題型模式入手,就向著提取相應(yīng)方法、使用相應(yīng)方法解題的方向前進(jìn)。
對(duì)高考解題來說,“模式識(shí)別”就是將新的高考考試題化歸為已經(jīng)解決的題。有兩個(gè)具體的途徑:
①化歸為課堂上已經(jīng)解過的題
理由1:因?yàn)檎n堂和課本是學(xué)生知識(shí)資源的基本來源,也是學(xué)生解題體驗(yàn)的主要引導(dǎo)。離開了課堂和課本,學(xué)生還能從哪里找到解題依據(jù)、解題方法、解題體驗(yàn)?還能從哪里找到解題靈感的撞針?高考解題一定要抓住“課堂和課本”這個(gè)根本。
理由2:因?yàn)檎n本是高考命題的基本依據(jù)。有的試題直接取自教材,或?yàn)樵},或?yàn)轭愵};有的試題是課本概念、例題、習(xí)題的改編;有的試題是教材中的幾個(gè)題目、幾種方法的串聯(lián)、并聯(lián)、綜合與開拓;少量難題也是按照課本內(nèi)容設(shè)計(jì)的,在綜合性、靈活性上提出較高要求。按照高考怎樣出題來處理高考怎樣解題應(yīng)是順理成章的。
②化歸為往年的高考題。
2、靠:陌生題目往熟靠
遇到稍新、稍難一點(diǎn)的題目,可能不直接屬于某個(gè)基本模式,但將條件或結(jié)論作變形后就屬于基本模式。
當(dāng)實(shí)施第一方案遇到障礙時(shí),我們的策略是什么?轉(zhuǎn)換視角,生成第二方案。
轉(zhuǎn)換視角,轉(zhuǎn)換到哪里?轉(zhuǎn)換到知識(shí)豐富域,也就是說把問題轉(zhuǎn)換到我們最熟悉的領(lǐng)域。這就包括:
(1)把一個(gè)領(lǐng)域中的問題,用另一個(gè)領(lǐng)域中的方法解決。
(2)換一種說法。
3、繞:正難則反迂回繞
高考是智慧的較量,尤其是面對(duì)困境如何擺脫的智慧?,F(xiàn)在的高考必然出現(xiàn)“生題”“新題”,對(duì)此考生可能一時(shí)無法把握,使思考困頓,解題停頓。這些戰(zhàn)略高地以單一的方式一味死攻并非上策,要學(xué)會(huì)從側(cè)翼進(jìn)攻,要有“戰(zhàn)略迂回”的意識(shí),從側(cè)面或反面的某個(gè)點(diǎn)突破,采取類似“管涌”的方式擴(kuò)大戰(zhàn)果可能更好?!罢y則反”是一個(gè)重要的解題策略,順向推有困難時(shí)就逆向推,直接證有困難時(shí)就間接證,從左邊推右邊有困難時(shí)就從右邊推左邊。
“人生能有幾回搏”,考場如人生,不如意事常有,關(guān)鍵不是無原則的放棄,也不是兩敗俱傷的死撐,我們要學(xué)會(huì)“迂回”,要善于走到事物的側(cè)面,甚至反面去看看,也許會(huì)出現(xiàn)“風(fēng)景這邊獨(dú)好”的喜人景象。
4、冒:猜測探路將險(xiǎn)冒
在常規(guī)思路無能為力,需要預(yù)測,需要直覺、估算、轉(zhuǎn)換視角、合情推理等思維方式,除了需要綜合我們?cè)诨军c(diǎn)、交匯點(diǎn)上的經(jīng)驗(yàn)外,主要不是抽象,而是直觀;主要不是邏輯推理,而是合情推理;主要不是知識(shí),而是常識(shí);主要不是我們通過大量訓(xùn)練獲知的規(guī)律,而是數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)。因?yàn)檠堇[推理能力是驗(yàn)證結(jié)果的能力,而直觀能力是預(yù)測結(jié)果的能力。沒有預(yù)測,我們驗(yàn)證什么。因此問題的關(guān)鍵是,尋求一種辦法,讓問題在“直觀上變得顯然起來”,這是德國數(shù)學(xué)家C。F,克萊因給我們的教誨。
從上面的分析中我們可以看到,在高考中要能取得優(yōu)異的成績,根據(jù)試題的類型選擇適當(dāng)?shù)乃季S策略猶為重要。
我們研究解題的思路與策略,在于形成解題方案。值得注意的是,方案形成后,還有一個(gè)重要問題是我們不能忽略的。就是:我們是否具備實(shí)現(xiàn)方案的能力?不只是思想,還要實(shí)踐。
運(yùn)算的準(zhǔn)確性、邏輯的嚴(yán)謹(jǐn)性和表達(dá)的規(guī)范性是需要在實(shí)踐中獲得的,由策略水平到技能水平。沒有策略不行,沒有策略思想,就只能停留在套路化的水平,策略是我們解題的哲學(xué)思想。但光有策略水平,沒有技能水平也不行,那是坐而論道,紙上談兵,我們不僅需要思路上的清晰,還需要算法上的嫻熟。
因此,在高三復(fù)習(xí)過程中,要在抓實(shí)基礎(chǔ)知識(shí)的學(xué)習(xí)、基本技能的訓(xùn)練、提高五大能力的前提下,要有計(jì)劃有目的地根據(jù)不同問題的特點(diǎn),加強(qiáng)思維策略和思維方法的指導(dǎo)和訓(xùn)練,切實(shí)提高思維能力和思維品質(zhì),只有這樣,才能確保在高考中取得優(yōu)異的成績,同時(shí),這更是新課程標(biāo)準(zhǔn)和新的時(shí)代給我們中學(xué)數(shù)學(xué)教學(xué)提出的要求。
專項(xiàng)練習(xí)題
1.雙曲線的方程為=1(a>0,b>0),焦距為4,一個(gè)頂點(diǎn)是拋物線y2=4x的焦點(diǎn),則雙曲線的離心率e=( )
A.2 B. C. D.
2.已知F1,F2是橢圓的兩個(gè)焦點(diǎn),滿足=0的點(diǎn)M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是( )
A. (0,1) B. C. D.
3.設(shè)F為拋物線y2=4x的焦點(diǎn),A,B,C為該拋物線上三點(diǎn).若=0,則||+||+||=( )
A.9 B.6 C.4 D.3
4.已知拋物線y2=2px(p>0),過其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為( )
A.x=1 B.x=-1 C.x=2 D.x=-2
5.已知A,B,P是雙曲線=1上不同的三點(diǎn),且A,B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPA·kPB=,則該雙曲線的離心率為( )
A.1 B.2 C. -1 D.-2
6.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,經(jīng)過F且斜率為的直線與拋物線在x軸上方的部分相交于點(diǎn)A,AKl,垂足為K,則AKF的面積是( )
A.4 B.3 C.4 D.8
7.過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為45°的直線交拋物線于A,B兩點(diǎn),若線段AB的長為8,則p= .
8.(2014湖南,文14)平面上一機(jī)器人在行進(jìn)中始終保持與點(diǎn)F(1,0)的距離和到直線x=-1的距離相等.若機(jī)器人接觸不到過點(diǎn)P(-1,0)且斜率為k的直線,則k的取值范圍是 .
9.已知雙曲線的中心在原點(diǎn),且一個(gè)焦點(diǎn)為F(,0),直線y=x-1與其相交于M, N兩點(diǎn),線段MN中點(diǎn)的橫坐標(biāo)為-,求此雙曲線的方程.
10.(2014安徽,文21)設(shè)F1,F2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),|AF1|=3|F1B|.
(1)若|AB|=4,ABF2的周長為16,求|AF2|;
(2)若cosAF2B=,求橢圓E的離心率.
11.已知點(diǎn)F是雙曲線=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若ABE是直角三角形,則該雙曲線的離心率是( )
A. B.2 C.1+ D.2+
12.(2014湖北,文8)設(shè)a,b是關(guān)于t的方程t2cosθ+tsinθ=0的兩個(gè)不等實(shí)根,則過A(a,a2),B(b,b2)兩點(diǎn)的直線與雙曲線=1的公共點(diǎn)的個(gè)數(shù)為( )
A.0 B.1 C.2 D.3
13.已知橢圓C:=1(a>b>0)的離心率為,雙曲線x2-y2=1的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為( )
A.=3 B.=1C.=-1D=-2
C.=1 D.=1
14.(2014江西,文20)如圖,已知拋物線C:x2=4y,過點(diǎn)M(0,2)任作一直線與C相交于A,B兩點(diǎn),過點(diǎn)B作y軸的平行線與直線AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)).
(1)證明:動(dòng)點(diǎn)D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點(diǎn)N1,與(1)中的定直線相交于點(diǎn)N2,證明:|MN2|2-|MN1|2為定值,并求此定值.
15.已知點(diǎn)A(0,-2),橢圓E:=1(a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn),當(dāng)OPQ的面積最大時(shí),求l的方程.
高考數(shù)學(xué)四大得分技巧及專項(xiàng)練習(xí)題相關(guān)文章:
★ 高考數(shù)學(xué)將有五大變化:抓住這6大題,得高分!
★ 直擊高考數(shù)學(xué):數(shù)學(xué)高分的六大技巧
★ 2019高考數(shù)學(xué)大題的最佳解題技巧及解題思路,清華學(xué)長告訴你如何拿...
★ 高考數(shù)學(xué)怎樣復(fù)習(xí):大題小題答題套路不一樣,答題技巧幫助你
★ 高考數(shù)學(xué)模擬試題提分專項(xiàng)訓(xùn)練