国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)科必修一知識考點(diǎn)

時(shí)間: 贊銳20 分享

在學(xué)習(xí)上,我們要深知學(xué)習(xí)的重要性.學(xué)習(xí)是學(xué)生的基本,至始至終都把學(xué)習(xí)擺在第一位.為了加強(qiáng)綜合素質(zhì),不斷地加強(qiáng)與自我的專業(yè)相關(guān)課程的學(xué)習(xí),來完善自我。以下是小編給大家整理的高一數(shù)學(xué)科必修一知識考點(diǎn),希望能幫助到你!

高一數(shù)學(xué)科必修一知識考點(diǎn)1

函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2)圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:

(1)任取x1,x2∈D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(即判斷差f(x1)-f(x2)的正負(fù));

(5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.

9.利用定義判斷函數(shù)奇偶性的步驟:

1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

10、函數(shù)的解析表達(dá)式

(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法

11.函數(shù)(小)值

1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值

2利用圖象求函數(shù)的(小)值

3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

高一數(shù)學(xué)科必修一知識考點(diǎn)2

一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個(gè)特性:

(1)元素的確定性,

(2)元素的互異性,

(3)元素的無序性,

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

?注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個(gè)元素的集合

(2)無限集含有無限個(gè)元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個(gè)集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時(shí)B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

三、集合的運(yùn)算

運(yùn)算類型交集并集補(bǔ)集

定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

例題:

1.下列四組對象,能構(gòu)成集合的是()

A某班所有高個(gè)子的學(xué)生B的藝術(shù)家C一切很大的書D倒數(shù)等于它自身的實(shí)數(shù)

2.集合{a,b,c}的真子集共有個(gè)

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是.

4.設(shè)集合A=,B=,若AB,則的取值范圍是

5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,

兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對的有人。

6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函數(shù)的有關(guān)概念

1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

注意:

1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

(見課本21頁相關(guān)例2)

2.值域:先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3.函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示.

5.映射

一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作f:A→B

6.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

二.函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2)圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3變形(通常是因式分解和配方);

○4定號(即判斷差f(x1)-f(x2)的正負(fù));

○5下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù)

一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2).奇函數(shù)

一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.

利用定義判斷函數(shù)奇偶性的步驟:

○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;

○2確定f(-x)與f(x)的關(guān)系;

○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數(shù)的圖象判定.

9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1)湊配法

2)待定系數(shù)法

3)換元法

4)消參法

10.函數(shù)(小)值(定義見課本p36頁)

○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值

○2利用圖象求函數(shù)的(小)值

○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

例題:

1.求下列函數(shù)的定義域:

⑴⑵

2.設(shè)函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開_

3.若函數(shù)的定義域?yàn)?,則函數(shù)的定義域是

4.函數(shù),若,則=

6.已知函數(shù),求函數(shù),的解析式

7.已知函數(shù)滿足,則=。

8.設(shè)是R上的奇函數(shù),且當(dāng)時(shí),,則當(dāng)時(shí)=

在R上的解析式為

9.求下列函數(shù)的單調(diào)區(qū)間:

⑴(2)

10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論.

11.設(shè)函數(shù)判斷它的奇偶性并且求證

高一數(shù)學(xué)科必修一知識考點(diǎn)3

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線方程

①點(diǎn)斜式:直線斜率k,且過點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點(diǎn)式:()直線兩點(diǎn),

④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(4)直線系方程:即具有某一共同性質(zhì)的直線


高一數(shù)學(xué)科必修一知識考點(diǎn)相關(guān)文章:

高一數(shù)學(xué)必修一知識點(diǎn)匯總

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識點(diǎn)

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)

高一數(shù)學(xué)必修1知識點(diǎn)歸納

數(shù)學(xué)高一必修一知識點(diǎn)

高一數(shù)學(xué)必修一知識整理

高一數(shù)學(xué)知識點(diǎn)總結(jié)(考前必看)

高中必修一數(shù)學(xué)知識點(diǎn)歸納

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)歸納

高一數(shù)學(xué)必修一的知識點(diǎn)總結(jié)介紹

1070056