初中九年級數(shù)學(xué)的知識點
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大家整理的一些九年級數(shù)學(xué)知識點,希望對大家有所幫助。
九年級下冊數(shù)學(xué)知識點歸納
知識點1.概念
把形狀相同的圖形叫做相似圖形。(即對應(yīng)角相等、對應(yīng)邊的比也相等的圖形)
解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素?zé)o關(guān).
知識點2.比例線段
對于四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段.
知識點3.相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對應(yīng)角相等,對應(yīng)邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確“對應(yīng)”關(guān)系.
(2)明確相似多邊形的“對應(yīng)”來自于書寫,且要明確相似比具有順序性.
知識點4.相似三角形的概念
對應(yīng)角相等,對應(yīng)邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來理解相似三角形;
(3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
(5)相似三角形的對應(yīng)邊之比叫做相似比.
知識點5.相似三角的判定方法
(1)定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構(gòu)成的三角形與原三角形相似.
(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似.
(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似.
(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似.
(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.
知識點6.相似三角形的性質(zhì)
(1)對應(yīng)角相等,對應(yīng)邊的比相等;
(2)對應(yīng)高的比,對應(yīng)中線的比,對應(yīng)角平分線的比都等于相似比;
(3)相似三角形周長之比等于相似比;面積之比等于相似比的平方.
(4)射影定理
初三下冊數(shù)學(xué)知識點總結(jié)
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉(zhuǎn)去實驗。
基本作圖很關(guān)鍵,平時掌握要熟練。解題還要多心眼,經(jīng)常總結(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會減。
虛心勤學(xué)加苦練,成績上升成直線。
數(shù)學(xué)學(xué)習(xí)方法技巧
“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運用“對應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標(biāo)平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)?!皩?yīng)”的思想在今后的學(xué)習(xí)中將會發(fā)揮越來越大的作用
自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學(xué)生物理學(xué)得好,不是我教出來的,而是他們自己悟出來的。當(dāng)然,校長是謙虛的,但他說明了一個道理,學(xué)生不能被動地學(xué)習(xí),而應(yīng)主動地學(xué)習(xí)。一個班里幾十個學(xué)生,同一個老師教,差異那么大,這就是學(xué)習(xí)主動性問題了。
自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,能不能運用自己所學(xué)過的已掌握的舊知識去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識的無矛盾性,你所學(xué)過的數(shù)學(xué)知識永遠(yuǎn)都是有用的,都是正確的,數(shù)學(xué)的進(jìn)一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實,就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時,在預(yù)習(xí)新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽老師講新課時總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯”,就是因為沒有預(yù)習(xí),沒有帶著問題學(xué),沒有將“要我學(xué)”真正變?yōu)椤拔乙獙W(xué)”,力求把知識變?yōu)樽约旱摹W(xué)來學(xué)去,知識還是別人的。檢驗數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨立解題、解對題才是學(xué)好數(shù)學(xué)的標(biāo)志。
初中九年級數(shù)學(xué)的知識點相關(guān)文章:
★ 初中九年級數(shù)學(xué)知識點總結(jié)歸納
★ 九年級數(shù)學(xué)上冊重要知識點總結(jié)