初中數(shù)學(xué)知識(shí)點(diǎn)匯總(最全)
在學(xué)習(xí)、工作、生活中,我們每個(gè)人都需要不斷地學(xué)習(xí),想要高效的學(xué)習(xí),就一定要掌握正確的學(xué)習(xí)方法!下面小編為大家?guī)?lái)初中數(shù)學(xué)知識(shí)點(diǎn)匯總,希望大家喜歡!
初中數(shù)學(xué)知識(shí)點(diǎn)匯總
冪函數(shù)的性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的`各自情況。
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
解題方法:換元法
解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái)?;蛘咦?yōu)槭煜さ男问?,把?fù)雜的計(jì)算和推證簡(jiǎn)化。
它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。
練習(xí)題:
1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
(1)求f(log2x)的最小值及對(duì)應(yīng)的x值;
(2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]<f(1)< p="">
2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點(diǎn)。
(1)求實(shí)數(shù)k的值及函數(shù)f-1(x)的解析式;
(2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍。
課前認(rèn)真預(yù)習(xí)
預(yù)習(xí)的目的是為了能更好得聽老師講課,通過(guò)預(yù)習(xí),掌握度要達(dá)到百分之八十。帶著預(yù)習(xí)中不明白的問(wèn)題去聽老師講課,來(lái)解答這類的問(wèn)題。預(yù)習(xí)還可以使聽課的整體效率提高。
具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識(shí)點(diǎn),整個(gè)過(guò)程大約持續(xù)15—20分鐘。在時(shí)間允許的情況下,還可以將練習(xí)冊(cè)做完。
要記好課堂筆記
要將平時(shí)的單元檢測(cè)出現(xiàn)的錯(cuò)誤問(wèn)題歸納一下,并且將錯(cuò)題再做一遍。然后總結(jié)為什么錯(cuò),錯(cuò)在什么地方。如果整張?jiān)嚲砜嫉枚疾缓茫敲纯梢詮?fù)印將試卷重做一遍。還可以將作業(yè)上的錯(cuò)題、難題、易錯(cuò)題重做一遍。這樣對(duì)以后的做題過(guò)程中會(huì)有意想不到的收獲。
另外在數(shù)學(xué)考試技巧上,如果想得高分,在選擇、填空、計(jì)算題上是不能丟分的。在考數(shù)學(xué)的時(shí)候思想不能開小差。但上課聽講、認(rèn)真答題及提高準(zhǔn)確率、總結(jié)經(jīng)驗(yàn)和方法技巧才是最重要的。還要將所學(xué)的知識(shí)用到生活中去,做到學(xué)以致用。你就會(huì)感受到學(xué)習(xí)數(shù)學(xué)的快樂(lè)。
學(xué)習(xí)數(shù)學(xué)需要注意什么
一、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)
接受一種新的知識(shí),主要實(shí)在課堂上進(jìn)行的,所以要重視課堂上的學(xué)習(xí)效率,找到適合自己的學(xué)習(xí)方法,上課時(shí)要跟住老師的思路,積極思考。下課之后要及時(shí)復(fù)習(xí),遇到不懂的地方要及時(shí)去問(wèn),在做作業(yè)的時(shí)候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過(guò)程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結(jié)和復(fù)習(xí),把知識(shí)點(diǎn)結(jié)合起來(lái),變成自己的知識(shí)體系。
二、多做題,養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績(jī)。剛開始做題的時(shí)候先以書上習(xí)題為主,答好基礎(chǔ),然后逐漸增加難度,開拓思路,練習(xí)各種類型的解題思路,對(duì)于容易出現(xiàn)錯(cuò)誤的題型,應(yīng)該記錄下來(lái),反復(fù)加以聯(lián)系。在做題的時(shí)候應(yīng)該養(yǎng)成良好的解題習(xí)慣,集中注意力,這樣才能進(jìn)入最佳的狀態(tài),形成習(xí)慣,這樣在考試的時(shí)候才能運(yùn)用自如。
初中數(shù)學(xué)知識(shí)點(diǎn)匯總(最全)相關(guān)文章:
★ 初中數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)
★ 初中七年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納整理
★ 初中數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 人教版初中數(shù)學(xué)知識(shí)點(diǎn)最新
★ 初中初三數(shù)學(xué)知識(shí)點(diǎn)
★ 初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納