高中數(shù)學立體幾何核心考點與學習方法
高中數(shù)學立體幾何核心考點與學習方法
高中數(shù)學立體幾何一直是數(shù)學的一大難點。因為它要求學生有立體感,在一個平面內把幾何圖形的立體感想象出來。同時,立體幾何題目也是高考數(shù)學核心考點,那么,有什么技巧呢?小編整理了相關資料,希望能幫助到您。
高中數(shù)學立體幾何核心考點
1、平行、垂直位置關系的論證的策略:
(1)由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證題思路。
(2)利用題設條件的性質適當添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應優(yōu)先考慮。
2、空間角的計算方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角
①平移法:②補形法:③向量法:
(2)直線和平面所成的角
?、僮鞒鲋本€和平面所成的角,關鍵是作垂線,找射影轉化到同一三角形中計算,或用向量計算。
?、谟霉接嬎?
(3)二面角
?、倨矫娼堑淖鞣ǎ?i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
?、谄矫娼堑挠嬎惴ǎ?/p>
(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;
(ii)射影面積法;
(iii)向量夾角公式.
3、空間距離的計算方法與技巧:
(1)求點到直線的距離:經(jīng)常應用三垂線定理作出點到直線的垂線,然后在相關的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質過該點作出平面的垂線,進而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉化為直線到平面的距離,從而“轉移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉化為點到平面的距離來求解。
4、熟記一些常用的小結論
諸如:正四面體的體積公式是;面積射影公式;“立平斜關系式”;最小角定理。弄清楚棱錐的頂點在底面的射影為底面的內心、外心、垂心的條件,這可能是快速解答某些問題的前提。
5、平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后有關幾何元素的“不變性”與“不變量”。
6、與球有關的題型,只能應用“老方法”,求出球的半徑即可。
7、立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結構特征。面面、線面、線線之間有哪些關系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8、解題程序劃分為四個過程:
①弄清問題。也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結論是什么?也就是我們常說的審題。
?、跀M定計劃。找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎上,從中捕捉有用的信息,并及時提取記憶網(wǎng)絡中的有關信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構思出一個成功的計劃。即是我們常說的思考。
?、蹐?zhí)行計劃。以簡明、準確、有序的數(shù)學語言和數(shù)學符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。
?、芑仡?。對所得的結論進行驗證,對解題方法進行總結。
我們平時在學習立體幾何時要注意哪些呢?
第一要建立空間觀念,提高空間想象力。從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自制一些空間幾何模型并反復觀察,這有益于建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,并且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構造定理的“圖”,對于建立空間觀念也是很有幫助的。
第二要掌握基礎知識和基本技能。要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地復習前面學過的內容。這是因為《立體幾何》內容前后聯(lián)系緊密,前面內容是后面內容的根據(jù),后面內容既鞏固了前面的內容,又發(fā)展和推廣了前面內容。在解題中,要書寫規(guī)范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據(jù),不論對于計算題還是證明題都應該如此,不能想當然或全憑直觀;對于文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數(shù)而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。
第三要不斷提高各方面能力。通過聯(lián)系實際、觀察模型或類比平面幾何的結論來提出命題;對于提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內容是以研究性課題的形式給出的,要從中體驗創(chuàng)造數(shù)學知識。要不斷地將所學的內容結構化、系統(tǒng)化。所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,并領會其中隱含的思想、方法。所謂系統(tǒng)化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統(tǒng)攝全局、組織整體的概念,用這些概念統(tǒng)攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯(lián)系,提高整體觀念。
要注意積累解決問題的策略。如將立體幾何問題轉化為平面問題,又如將求點到平面距離的問題,或轉化為求直線到平面距離的問題,再繼而轉化為求點到平面距離的問題;或轉化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點——一個固有的或確定的數(shù)學關系。要不斷提高反省認知水平,積極反思自己的學習活動,從經(jīng)驗上升到自動化,從感性上升到理性,加深對理論的認識水平,提高解決問題的能力和創(chuàng)造性。
在平時的學習過程中,對于證明過的一些典型命題,可以把其作為結論記下來。利用這些結論可以很快地求出一些運算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對于一些解答題雖然不能直接應用這些結論,但其也會幫助我們打開解題思路,進而求解出答案。