四年級數(shù)學(xué)上冊知識點復(fù)習(xí)
學(xué)習(xí)從來無捷徑。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的四年級數(shù)學(xué)知識點,希望對大家有所幫助。
四年級數(shù)學(xué)知識點
角
(1)角的定義從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的度量角的計量單位是"度",用符號"°"表示。把半圓分成180等份,每一份所對的角的大小是1度。記作"1°"。
(3)角的大小比較角的大小與角的兩邊畫出的長短沒有關(guān)系。角的大小要看兩條邊叉開的大小,叉開得越大,角越大。
(4)角的畫法一畫線,二量角,三連線,四標(biāo)注。一副三角板可以畫出的角的度數(shù)是15的倍數(shù)。
(5)角的分類
①銳角:小于90°的角叫做銳角。
②直角:等于90°的角叫做直角。
③鈍角:大于90°而小于180°的角叫做鈍角。
④平角:角的兩邊成一條直線,所組成的角叫做平角。平角180°。
⑤周角:角的一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360°。
四年級數(shù)學(xué)知識點整理
雞兔問題公式
(1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:
(總腳數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或者是(每只兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當(dāng)雞的總腳數(shù)比兔的總腳數(shù)多時,可用公式
(每只雞腳數(shù)×總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)
或(每只兔腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當(dāng)兔的總腳數(shù)比雞的總腳數(shù)多時,可用公式。
(每只雞的腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或(每只兔的腳數(shù)×總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1只合格品得分?jǐn)?shù)×產(chǎn)品總數(shù)-實得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)?;蛘呤强偖a(chǎn)品數(shù)-(每只不合格品扣分?jǐn)?shù)×總產(chǎn)品數(shù)+實得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)。
例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(“得失問題”也稱“運玻璃器皿問題”,運到完好無損者每只給運費_元,破損者不僅不給運費,還需要賠成本_元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。
例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬于假設(shè)問題,假設(shè)的和最后結(jié)果相反。
2、“雞兔同籠”問題的解題方法
假設(shè)法:
①假如都是兔
②假如都是雞
③古人“抬腳法”:
解答思路:
假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數(shù)就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數(shù)÷2-雞兔總數(shù)=兔的只數(shù);
雞兔總數(shù)-兔的只數(shù)=雞的只數(shù)。
小學(xué)四年級上冊數(shù)學(xué)知識點
1.大數(shù)的認(rèn)識
億以內(nèi)的數(shù)的認(rèn)識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬;
2.數(shù)級
數(shù)級是為便于人們記讀阿拉伯?dāng)?shù)的一種識讀方法,在位值制(數(shù)位順序)的基礎(chǔ)上,以三位或四位分級的原則,把數(shù)讀,寫出來。通常在阿拉伯?dāng)?shù)的書寫上,以小數(shù)點或者空格作為各個數(shù)級的標(biāo)識,從右向左把數(shù)分開。
3.數(shù)級分類
(1)四位分級法
即以四位數(shù)為一個數(shù)級的分級方法。我國讀數(shù)的習(xí)慣,就是按這種方法讀的。
如:萬(數(shù)字后面4個0)、億(數(shù)字后面8個0)、兆(數(shù)字后面12個0,這是中法計數(shù))……
這些級分別叫做個級,萬級,億級……
(2)三位分級法
即以三位數(shù)為一個數(shù)級的分級方法。這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數(shù)字后面3個0、百萬,數(shù)字后面6個0、十億,數(shù)字后面9個0……。
4.數(shù)位
數(shù)位是指寫數(shù)時,把數(shù)字并列排成橫列,一個數(shù)字占有一個位置,這些位置,都叫做數(shù)位。從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。這就說明計數(shù)單位和數(shù)位的概念是不同的。
5.數(shù)的產(chǎn)生
阿拉伯?dāng)?shù)字的由來:古代印度人創(chuàng)造了阿拉伯?dāng)?shù)字后,大約到了公元7世紀(jì)的時候,這些數(shù)字傳到了阿拉伯地區(qū)。到13世紀(jì)時,意大利數(shù)學(xué)家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯?dāng)?shù)字做了詳細(xì)的介紹。后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯?dāng)?shù)字。以后,這些數(shù)字又從歐洲傳到世界各國。
阿拉伯?dāng)?shù)字傳入我國,大約是13到14世紀(jì)。由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯?dāng)?shù)字當(dāng)時在我國沒有得到及時的推廣運用。本世紀(jì)初,隨著我國對外國數(shù)學(xué)成就的吸收和引進,阿拉伯?dāng)?shù)字在我國才開始慢慢使用,阿拉伯?dāng)?shù)字在我國推廣使用才有100多年的歷史。阿拉伯?dāng)?shù)字現(xiàn)在已成為人們學(xué)習(xí)、生活和交往中最常用的數(shù)字了。
四年級數(shù)學(xué)上冊知識點復(fù)習(xí)相關(guān)文章:
★ 做小學(xué)四年級數(shù)學(xué)上冊知識點總結(jié)
★ 人教版小學(xué)四年級數(shù)學(xué)上冊知識點