2023四川文科數(shù)學(xué)高考試卷及參考答案
2023四川文科數(shù)學(xué)高考試卷及參考答案(圖片版)
小編整理了2023四川文科數(shù)學(xué)高考試卷及參考答案,數(shù)學(xué)在多個(gè)不同領(lǐng)域的應(yīng)用一般被稱為應(yīng)用數(shù)學(xué),有時(shí)亦會(huì)激起新的數(shù)學(xué)發(fā)現(xiàn),并促成全新數(shù)學(xué)學(xué)科的發(fā)展。下面是小編為大家整理的2023四川文科數(shù)學(xué)高考試卷及參考答案,希望能幫助到大家!
2023四川文科數(shù)學(xué)高考試卷及參考答案
高考必考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
1、不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
2、一元二次不等式
①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
3、二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題
①?gòu)膶?shí)際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。
③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決。
4、基本不等式
①探索并了解基本不等式的證明過程。
②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問題。
高中數(shù)學(xué)??贾R(shí)點(diǎn)
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個(gè)平面內(nèi);
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角。
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)。
判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)。
性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的'交線平行。
2、平面與平面平行
定義:兩個(gè)平面沒有公共點(diǎn)。
判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行。
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線。
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直。
判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直。
性質(zhì):垂直于同一直線的兩平面平行。
推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面。
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度。
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)。
判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。