考研數(shù)學(xué)難度以及復(fù)習(xí)技巧
數(shù)學(xué)難,難于上青天,這是很多的考研學(xué)生說(shuō)的一句話了,那么考研數(shù)學(xué)究竟會(huì)有多難呢 ,還會(huì)有哪些復(fù)習(xí)方法,這些都是要考研的學(xué)生要了解的。以下是小編推薦考研數(shù)學(xué)難度的知識(shí),歡迎閱讀!
考研數(shù)學(xué)難度
第1題考察的是極限的知識(shí),相信大家都能拿到分?jǐn)?shù)。
第2題考察我們對(duì)函數(shù)的極值點(diǎn)求解的掌握情況,多元函數(shù)極值。
第3題是討論函數(shù)的性質(zhì)??傮w來(lái)說(shuō),選擇題難度不大,沒(méi)有難題,大家應(yīng)該把基礎(chǔ)題拿到分。
第10題是,考了差分方程有重根的情況。
第11題考察了經(jīng)濟(jì)學(xué)應(yīng)用,記住公式了也不是很難。
第12題考察了全微分形式,這種題型前幾年也出現(xiàn)過(guò)。
第15題考察的是極限問(wèn)題,對(duì)于變限積分,先做變換做進(jìn)行處理。
第16題是二重積分的問(wèn)題,這種題目在做的時(shí)候一定要先劃出積分區(qū)域,再加上計(jì)算的時(shí)候細(xì)心一點(diǎn),也不會(huì)丟分。
第17題是定積分定義,轉(zhuǎn)換成分部積分。
18、19相對(duì)來(lái)說(shuō)難度要大一些。
整個(gè)數(shù)學(xué)的命題我認(rèn)為有以下三個(gè)特點(diǎn):
第一,整體的難度相對(duì)去年來(lái)講都有下降;
第二,沒(méi)有太多復(fù)雜的、大規(guī)模的計(jì)算,主要考查的都是一些平常強(qiáng)調(diào)過(guò)的基本概念、基本方法;
第三,題型的重復(fù)性相當(dāng)高,75%以上的題型都是以前考過(guò)的,所以凡是好好研究過(guò)前幾年真題的同學(xué)應(yīng)該都是沒(méi)有問(wèn)題的。
考研數(shù)學(xué)復(fù)習(xí)技巧
一、梳理基本知識(shí)點(diǎn),理順知識(shí)點(diǎn)間的聯(lián)系
經(jīng)歷了沖刺階段大量題型的練習(xí),同學(xué)們?cè)谧鲱}方法和技巧上都有所提高,但是卻忽略一些基本概念、定義、公式等,在這些基本題目上丟分。這期間同學(xué)們一定把基本知識(shí)點(diǎn)掌握牢固,并且梳理好知識(shí)點(diǎn),理順知識(shí)點(diǎn)間的聯(lián)系。這樣做基本題和綜合題目時(shí),才能立馬想到用到的知識(shí)點(diǎn)和方法,做起題來(lái)才能得心應(yīng)手。
二、按時(shí)按計(jì)劃完成真題,總結(jié)常考題型的方法和技巧
真題是最有價(jià)值的練習(xí)題。同學(xué)們做每套題時(shí),盡量按照考試的要求,在規(guī)定的時(shí)間內(nèi)完成題目,然后核對(duì)答案,估算分?jǐn)?shù)。務(wù)必把不會(huì)做的題目單獨(dú)拿出來(lái)弄懂,并把沒(méi)掌握好的一類題目重點(diǎn)復(fù)習(xí)一下,對(duì)應(yīng)地再做幾道題目加深記憶。做完每套題,一定要總結(jié)??碱}型的方法和技巧,這樣才能在遇到類似題目時(shí)泰然自若。
三、鞏固重點(diǎn)題型,做好最后的查缺補(bǔ)漏工作
數(shù)學(xué)三天不做題,就會(huì)沒(méi)有手感。后期,同學(xué)們每天一定要定量做一些題目保持手感,可以把之前沒(méi)有掌握牢固的重點(diǎn)題型拿出來(lái)鞏固,一旦發(fā)現(xiàn)薄弱環(huán)節(jié),馬上彌補(bǔ),不要因?yàn)橛X(jué)得困難而放棄。保持穩(wěn)定的情緒和良好的心態(tài),做好最后的查缺補(bǔ)漏工作。
四、注意飲食,合理休息,將生物鐘調(diào)整到考試的狀態(tài)
最后這段時(shí)間身體和心理上都會(huì)忍受極大的折磨,同學(xué)們一定要注意飲食,合理休息,不要搞疲勞戰(zhàn),尤其是考前幾天熬夜突擊,這樣往往會(huì)適得其反。同學(xué)們調(diào)理好生物鐘,將做題的時(shí)間安排調(diào)整到跟考試一致,這樣才能使自己是身心狀態(tài)在考場(chǎng)上達(dá)到最佳。經(jīng)過(guò)了一年艱辛的努力,這十幾天只需要保持平和的心態(tài),積極應(yīng)戰(zhàn)考試,不驕傲自滿,不自卑放棄,不去想成敗得失,堅(jiān)持到底才能取得佳績(jī)。
2018考研數(shù)學(xué)易錯(cuò)點(diǎn)分析
高等數(shù)學(xué)
1.函數(shù)在一點(diǎn)處極限存在,連續(xù),可導(dǎo),可微之間關(guān)系。對(duì)于一元函數(shù)函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點(diǎn)連續(xù),則該函數(shù)在該點(diǎn)必有極限。若函數(shù)在某點(diǎn)不連續(xù),則該函數(shù)在該點(diǎn)不一定無(wú)極限。若函數(shù)在某點(diǎn)可導(dǎo),則函數(shù)在該點(diǎn)一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點(diǎn)一定不連續(xù),可導(dǎo)與可微等價(jià)。而對(duì)于二元函數(shù),只能又可微推連續(xù)和可導(dǎo)(偏導(dǎo)都存在),其余都不成立。
2.基本初等函數(shù)與初等函數(shù)的連續(xù)性:基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
3.極值點(diǎn),拐點(diǎn)。駐點(diǎn)與極值點(diǎn)的關(guān)系:在一元函數(shù)中,駐點(diǎn)可能是極值點(diǎn),也可能不是極值點(diǎn),而函數(shù)的極值點(diǎn)必是函數(shù)的駐點(diǎn)或?qū)?shù)不存在的點(diǎn)。注意極值點(diǎn)和拐點(diǎn)的定義一充、二充、和必要條件。
4.夾逼定理和用定積分定義求極限。這兩種方法都可以用來(lái)求和式極限,注意方法的選擇。還有夾逼定理的應(yīng)用,特別是無(wú)窮小量與有界量之積仍是無(wú)窮小量。
5.可導(dǎo)是對(duì)定義域內(nèi)的點(diǎn)而言的,處處可導(dǎo)則存在導(dǎo)函數(shù),只要一個(gè)函數(shù)在定義域內(nèi)某一點(diǎn)不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。
6.泰勒中值定理的應(yīng)用,可用于計(jì)算極限以及證明。
7.比較積分的大小。定積分比較定理的應(yīng)用(常用畫圖法),多重積分的比較,特別注意第二類曲線積分,曲面積分不可直接比較大小。
8.抽象型的多元函數(shù)求導(dǎo),反函數(shù)求導(dǎo)(高階),參數(shù)方程的二階導(dǎo),以及與變限積分函數(shù)結(jié)合的求導(dǎo)
9.廣義積分和級(jí)數(shù)的斂散性的判斷。
10.介值定理和零點(diǎn)定理的應(yīng)用。關(guān)鍵在于觀察和變換所要證明等式的形式,構(gòu)造輔助函數(shù)。
11.保號(hào)性。極限的性質(zhì)中最重要的就是保號(hào)性,注意保號(hào)性的兩種形式以及成立的條件。
12.第二類曲線積分和第二類曲面積分。在求解的過(guò)程中一般會(huì)使用格林公式和高斯公式,大部分同學(xué)都會(huì)把精力關(guān)注在是否閉合,偏導(dǎo)是否連續(xù)上,而忘記了第三個(gè)條件——方向,要引起注意。線性代數(shù)
1、行列式的計(jì)算。行列式直接考察的概率不高,但行列式是線代的工具,判定系數(shù)矩陣為方陣的線性方程組解的情況及特征值的計(jì)算都會(huì)用到行列式的計(jì)算,故要引起重視。
2、矩陣的變換。矩陣是線代的研究對(duì)象,線性方程組、特征值與特征向量、相似對(duì)角化,二次型,其實(shí)都是在研究矩陣。一定要注意在化階梯型時(shí)只能對(duì)矩陣做行變換,不可做列變換變換。
3、向量和秩。向量和秩比較抽象,也是線代學(xué)習(xí)的重點(diǎn)和難點(diǎn),研究線性方程組解的情況其實(shí)就是在研究系數(shù)矩陣的秩,也是在研究把系數(shù)矩陣按列分塊得到的向量組的秩。
4、線性方程組的解。線性方程組是每年的必看知識(shí)點(diǎn),要熟練掌握線性方程組解的結(jié)構(gòu)問(wèn)題,核心是理解基礎(chǔ)解系,要能夠掌握具體方程組的數(shù)列方法,更要能熟練解決抽象型方程組,一般會(huì)轉(zhuǎn)化為系數(shù)矩陣的秩或者基礎(chǔ)解,然后解決問(wèn)題。
5、特征值與特征向量。特征值與特征向量起到承前啟后的作用,一特征值對(duì)應(yīng)的特征向量其實(shí)就是其對(duì)應(yīng)矩陣作為系數(shù)矩陣的齊次線性方程組的基礎(chǔ)解系,其重要應(yīng)用就是相似對(duì)角化及正交相似對(duì)角化,是后面二次型的基礎(chǔ)。
6、相似對(duì)角化,包括相似對(duì)角化及正交相似對(duì)角化。要會(huì)判斷是否可以相似對(duì)角化,及正交相似對(duì)角化時(shí),怎么施密特正交化和單位化。
7、二次型。二次型是線代的一個(gè)綜合型章節(jié),會(huì)用到前面的很多知識(shí)。要熟練掌握用正交變換化二次型為標(biāo)準(zhǔn)型,二次型正定的判定,及慣性指數(shù)。
8、矩陣等價(jià)及向量組等價(jià)的充要條件,矩陣等價(jià),相似,合同的條件。
概率論與數(shù)理統(tǒng)計(jì)
1、非等可能 與 等可能。若一次隨機(jī)試驗(yàn)中可能出現(xiàn)的結(jié)果有N個(gè),且所有結(jié)果出現(xiàn)的可能性都相等,則每一個(gè)基本事件的概率都是1/N;若其中某個(gè)事件A包含的結(jié)果有M個(gè),則事件A的概率為M/N。
2、互斥與對(duì)立 對(duì)立一定互斥,但互斥不一定對(duì)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B對(duì)立,則滿足(1)A∩B=空集;(2)P(A+B)=1。
3、互斥與獨(dú)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B獨(dú)立,則P(AB)=P(A)P(B);概率為0或者1的事件與任何事件都獨(dú)立
4、排列與組合。排列與順序有關(guān),組合與順序無(wú)關(guān),同類相乘有序,不同類相乘無(wú)序。
5、不可能事件與概率為零的隨機(jī)事件。 不可能事件的概率一定為零,但概率為零的隨機(jī)事件不一定是不可能事件,如連續(xù)型隨機(jī)變量在任何一點(diǎn)的概率都為0。
6、必然事件與概率為1的事件。必然事件的概率一定為1,但概率為1的隨機(jī)事件不一定是必然事件。對(duì)于一般情形,由P(A)=P(B)同樣不能推得隨機(jī)事件A等于隨機(jī)事件B。
7、條件概率。P(A|B)表示事件B發(fā)生條件下事件A發(fā)生的概率。若“B是A的子集”,則P(A|B)=1,但P(B|A)=P(B)是不對(duì)的,只有當(dāng)P(A)=1時(shí)才成立。在求二維連續(xù)型隨機(jī)變量的條件概率密度函數(shù)時(shí),一定是在邊緣概率密度函數(shù)大于零時(shí),才可使用“條件=聯(lián)合/邊緣”;反過(guò)來(lái)用此公式求聯(lián)合概率密度函數(shù)時(shí),也要保證邊緣概率密度函數(shù)大于零。
8、隨機(jī)變量概率密度函數(shù)。對(duì)于一維連續(xù)型隨機(jī)變量,用分布函數(shù)法,先討論概率為0和1的區(qū)間,然后反解,再討論,最后求導(dǎo)。對(duì)于二維隨機(jī)變量,若是連續(xù)型和離散型,用全概率公式,若是連續(xù)型和連續(xù)性同樣用分布函數(shù)法,若隨機(jī)變量是Z=X+Y型,用卷積公式。
猜你感興趣:
1.給學(xué)弟學(xué)妹們的考研數(shù)學(xué)復(fù)習(xí)方法
2.前輩教你如何復(fù)習(xí)考研數(shù)學(xué)