八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)有哪些
數(shù)學(xué)是一門(mén)基礎(chǔ)性的科學(xué),值得每個(gè)人去學(xué)習(xí),尤其是孩子,更要去學(xué)習(xí)數(shù)學(xué),并且以此來(lái)構(gòu)架自己的思維體系。下面小編為大家?guī)?lái)八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)有哪些,希望大家喜歡!
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
軸對(duì)稱
一、軸對(duì)稱圖形
1、軸對(duì)稱圖形的概念:把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。
2、 軸對(duì)稱的概念:把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)。
3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系。
4、畫(huà)一圖形關(guān)于某條直線的軸對(duì)稱圖形的步驟:找到關(guān)鍵點(diǎn),畫(huà)出關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
5、在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)。關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,—y) 點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(—x,y) 點(diǎn)(x,y)關(guān)于原點(diǎn)軸對(duì)稱的點(diǎn)的坐標(biāo)為(—x,—y)
二、線段的垂直平分線
垂直平分線的概念:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
推論:
(1)線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等 ;
(2)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上;
(3)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上。
三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等。
八年級(jí)數(shù)學(xué)上冊(cè)必考知識(shí)點(diǎn)
1.分式:一般地,用A、B表示兩個(gè)整式,AB就可以表示為 的形式,如果B中含有字母,式子 叫做分式。
2.有理式:整式與分式統(tǒng)稱有理式;即 。
3.對(duì)于分式的兩個(gè)重要判斷:(1)若分式的分母為零,則分式無(wú)意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義。
4.分式的基本性質(zhì)與應(yīng)用:
(1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;
(2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變; 即
(3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡(jiǎn)單。
5.分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解。
6.最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式,這個(gè)分式叫做最簡(jiǎn)分式;注意:分式計(jì)算的最后結(jié)果要求化為最簡(jiǎn)分式。
7.分式的乘除法法則: 。
8.分式的乘方: 。
9.負(fù)整指數(shù)計(jì)算法則:
(1)公式: a0=1(a0), a—n= (a
(2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計(jì)算;
(3)公式: , ;
(4)公式: (—1)—2=1, (—1)—3=—1。
10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡(jiǎn)公分母。
11.最簡(jiǎn)公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的最高次冪。
12.同分母與異分母的分式加減法法則: 。
13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對(duì)x來(lái)說(shuō),字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱它為含有字母系數(shù)的一元一次方程。注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù)。
14.公式變形:把一個(gè)公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程。特別要注意:字母方程兩邊同時(shí)乘以含字母的代數(shù)式時(shí),一般需要先確認(rèn)這個(gè)代數(shù)式的值不為0。
15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過(guò)的,分母里不含未知數(shù)的方程是整式方程。
16.分式方程的增根:在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根。
17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡(jiǎn)公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無(wú)解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根。
18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加驗(yàn)增根的程序。
八年級(jí)數(shù)學(xué)上冊(cè)重要知識(shí)點(diǎn)
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
1、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;
2、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
1、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)有哪些相關(guān)文章:
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)歸納
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)人教版
★ 初二數(shù)學(xué)知識(shí)點(diǎn)上冊(cè)
★ 關(guān)于初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
★ 初二數(shù)學(xué)知識(shí)點(diǎn)上冊(cè)主要內(nèi)容
★ 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)2021