国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>備考資料>

高中數(shù)學必修五不等式提綱

時間: 自暢0 分享

數(shù)學在高考中是占有非常大的分數(shù)比重的,那么學好高中數(shù)學就顯得尤為重要了,你會寫數(shù)學提綱嗎?下面小編給大家分享一些高中數(shù)學必修五不等式提綱,希望能夠幫助大家,歡迎閱讀!

高中數(shù)學必修五不等式提綱

不等式

不等式這部分知識,滲透在中學數(shù)學各個分支中,有著十分廣泛的應用。因此不等式應用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據(jù)題設與結論的結構特點、內(nèi)在聯(lián)系、選擇適當?shù)慕鉀Q方案,最終歸結為不等式的求解或證明。不等式的應用范圍十分廣泛,它始終貫串在整個中學數(shù)學之中。諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復數(shù)、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結為不等式的求解或證明。

知識整合

1。解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù)、數(shù)形結合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數(shù)的不等式,運用圖解法可以使得分類標準明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉(zhuǎn)化和相互變用。

3。在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù),將不等式的解化歸為直觀、形象的圖象關系,對含有參數(shù)的不等式,運用圖解法,可以使分類標準更加明晰。

4。證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設、題斷的結構特點、內(nèi)在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

不等式相關公式

a>b,b>c=>a>c;

a>b=>a+c>b+c;

a>b,c>0=>ac>bc;

a>b,c<0=>ac

;a>b>0,c>d>0=>ac>bd;

a>b,ab>0=>1/a<1/b

;a>b>0=>a^n>b^n;

基本不等式:(根號ab)≤(a+b)/2

那麼可以變?yōu)閍^2-2ab+b^2≥0

a^2+b^2≥2ab

一個是||a|-|b||≤|a-b|≤|a|+|b|

另一個是||a|-|b||≤|a+b|≤|a|+|b|

證明可利用向量,把a、b看作向量,利用三角形兩邊之差小于第三邊,

兩邊之和大于第三邊。

常用解題方法

方法一、調(diào)理大腦思緒,提前進入數(shù)學情境

考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設數(shù)學情境,進而醞釀數(shù)學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強信心,使思維單一化、數(shù)學化、以平穩(wěn)自信、積極主動的心態(tài)準備應考。

方法二、“內(nèi)緊外松”,集中注意,消除焦慮怯場

集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

方法三、沉著應戰(zhàn),確保旗開得勝,以利振奮精神

良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入思維狀態(tài),即發(fā)揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產(chǎn)生正激勵,穩(wěn)拿中低,見機攀高。

方法四、“六先六后”,因人因卷制宜

在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場解題能力的黃金季節(jié)了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執(zhí)行“六先六后”的戰(zhàn)術原則。

1、先易后難。就是先做簡單題,再做綜合題,應根據(jù)自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

2、先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達到拿下中高檔題目的目的。

3、先同后異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,4.先小后大。小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗5.先點后面。近年的高考數(shù)學解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為后面問題準備了思維基礎和解題條件,所以要步步為營,由點到面6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

方法五、一“慢”一“快”,相得益彰

有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急于解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。

方法六、確保運算準確,立足一次成功

數(shù)學高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數(shù)學題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟,假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

方法七、講求規(guī)范書寫,力爭既對又全

考試的又一個特點是以卷面為依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環(huán)效應”?!皶鴮懸ふ砻婺艿梅帧敝v的也正是這個道理。

方法八、面對難題,講究方法,爭取得分

會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

1、缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數(shù)。如從最初的把文字語言譯成符號語言,把條件和目標譯成數(shù)學表達式,設應用題的未知數(shù),設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數(shù)學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。

2、跳步解答。解題過程卡在一中間環(huán)節(jié)上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點,可在相應題尾補上。

方法九、以退求進,立足特殊,發(fā)散一般

對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等??傊?,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達到對“一般”的解決。

方法十、執(zhí)果索因,逆向思考,正難則反

對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。

方法十一、回避結論的肯定與否定,解決探索性問題

對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。

方法十二、應用性問題思路:面—點—線

解決應用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數(shù)據(jù),此為“點”;綜合聯(lián)系,提煉關系,依靠數(shù)學方法,建立數(shù)學模型,此為“線”,如此將應用性問題轉(zhuǎn)化為純數(shù)學問題。當然,求解過程和結果都不能離開實際背景。

高中數(shù)學的學習方法

1.抓住重點聽講

上課前我是一定要預習的,有時間就看的仔細些,老師要講什么內(nèi)容,有什么定義、定理和公式我先都記住,再看一些例題去理解定義和定理的應用,腦子里會形成那些我明白了,那些不理解,記在本子上。上課的時候,老師嘴一張開我就知道老師要講什么了,會的我就看自己的書,不會的我就仔細聽講。

我善于抓住重點去聽講,記的時候,我看其他同學是什么都記,我不是,凡是書上有的內(nèi)容我從不記,比如定義、定理和公式和書上的例題。我只記一些書上沒有的內(nèi)容,我不會的內(nèi)容,還有老師說這是重點或難點的內(nèi)容。我經(jīng)常在書上做一些紀錄,我的書看完是滿書涂鴉,不適合別人看了,以后自己一翻書,我就會從我的紀錄上回憶這一節(jié)的全部內(nèi)容,一翻書就回憶,經(jīng)常翻就記的很牢了。

2.多看輔導書

老師布置的作業(yè)我肯定都要做完,但我不會滿足于老師布置的作業(yè),我還要看一些輔導書籍,做一些輔導書籍上的作業(yè),直到我能理解定義、定理和公式的含義,一道題盡量用多種辦法去解題,做到舉一反三。我經(jīng)常買和課程有關的輔導書籍看,每一門課程我都有好幾本相關的輔導書籍。

3.定期整理歸納

每學完一章的內(nèi)容,我都要進行小結。把這章的內(nèi)容歸納一下,把定義、定理、公式和這個定義、定理、公式有代表行的練習題寫出來,最后就是用幾句話把這一章的內(nèi)容概括一下,目的是方便記憶。我寫在一張紙上,放在口袋里,隨時會拿出這張紙來看一下。我一般不看完,只看前面幾個字,然后去想后面的內(nèi)容,實在想不出來才再看一下的??荚嚽懊恳豢颇课叶际前褍?nèi)容歸納后,寫在紙上放在口袋里,跑到?jīng)]人的大樹底下,一會看一下歸納的紙條,背誦內(nèi)容和例題。

提高數(shù)學成績的技巧是什么

課內(nèi)重視聽講,課后及時復習

接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之后要及時復習,遇到不懂的地方要及時去問,在做作業(yè)的時候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結和復習,把知識點結合起來,變成自己的知識體系。

多做題,養(yǎng)成良好的解題習慣

要想學好數(shù)學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學成績。剛開始做題的時候先以書上習題為主,答好基礎,然后逐漸增加難度,開拓思路,練習各種類型的解題思路,對于容易出現(xiàn)錯誤的題型,應該記錄下來,反復加以聯(lián)系。在做題的時候應該養(yǎng)成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態(tài),形成習慣,這樣在考試的時候才能運用自如。

3如何快速提高數(shù)學成績

1.選準一本與教材同步的輔導書或練習冊,做完一節(jié)的全部練習后,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易后難,遇到不會的題一定要先跳過去,以平穩(wěn)的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是。

2.題不在多,而在于精,學會“解剖麻雀”。充分理解題意,注意對整個問題的轉(zhuǎn)譯,深化對題中某個條件的認識;看看與哪些數(shù)學基礎知識相聯(lián)系,有沒有出現(xiàn)一些新的功能或用途?再現(xiàn)思維活動經(jīng)過,分析想法的產(chǎn)生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經(jīng)過和感想,想到什么就寫什么,以便挖掘出一般的數(shù)學思想方法和數(shù)學思維方法;一題多解,一題多變,多元歸一。

3.復習:“溫故而知新”,把一些比較“經(jīng)典”的題重做幾遍,把做錯的題當作一面“鏡子”進行自我反思,也是一種高效率的、針對性較強的學習方法。

高中數(shù)學必修五不等式提綱相關文章

高二數(shù)學必修5不等式

高中必修五數(shù)學公式總結

高中數(shù)學不等式復習

高中數(shù)學必修5數(shù)列知識點總結

高二數(shù)學必修五公式

高二數(shù)學考點知識點總結復習大綱

高三數(shù)學第二章必修五知識點

人教版高三數(shù)學必修五教案

高三數(shù)學集合復習必修五知識點總結

高一數(shù)學必修五數(shù)列知識點

高中數(shù)學必修五不等式提綱

數(shù)學在高考中是占有非常大的分數(shù)比重的,那么學好高中數(shù)學就顯得尤為重要了,你會寫數(shù)學提綱嗎?下面小編給大家分享一些高中數(shù)學必修五不等式提綱,希望能夠幫助大家,歡迎閱讀!高中數(shù)學必修五不等式提綱不等式不等
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 數(shù)學必修五第一單元提綱
    數(shù)學必修五第一單元提綱

    要想學好數(shù)學,多做題是不可避免的。當然,我們也要善于總結,做好知識點提綱,下面小編給大家分享一些數(shù)學必修五第一單元提綱,希望能夠幫助大家

  • 高中人教版數(shù)學必修四提綱
    高中人教版數(shù)學必修四提綱

    學好數(shù)學第一要養(yǎng)成預習的習慣。這是多年學習數(shù)學的一個好方法,因為提前把老師要講的知識先學一遍,下面小編給大家分享一些高中人教版數(shù)學必修四

  • 數(shù)學人教版必修四三角函數(shù)提綱
    數(shù)學人教版必修四三角函數(shù)提綱

    數(shù)學是我們我們從小學到大的一門學科,如果能認認真真學下來,數(shù)學并不難,只是數(shù)學要下苦功去學,以下是小編給大家整理的數(shù)學人教版必修四三角函

  • 高一數(shù)學必修一知識提綱
    高一數(shù)學必修一知識提綱

    隨著年級的不同,所接觸的數(shù)學課本知識難度也會有所變化,那怎樣可以更好應對這一系列的變化,以下是小編給大家整理的高一數(shù)學必修一知識提綱,希

1106949