国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)知識的重點要點的總結(jié)

時間: 贊銳0 分享

學(xué)數(shù)學(xué)要做一定量的習(xí)題,但學(xué)數(shù)學(xué)并不等于做題,在各種考試題中,有相當(dāng)?shù)牧?xí)題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,下面是小編給大家?guī)淼?a href='http://m.zbfsgm.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學(xué)知識的重點要點的總結(jié),希望大家能夠喜歡!

高二數(shù)學(xué)知識的重點要點的總結(jié)1

一、不等式的性質(zhì)

1.兩個實數(shù)a與b之間的大小關(guān)系

2.不等式的性質(zhì)

(4)(乘法單調(diào)性)

3.絕對值不等式的性質(zhì)

(2)如果a>0,那么

(3)|a?b|=|a|?|b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的證明

1.不等式證明的依據(jù)

(2)不等式的性質(zhì)(略)

(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號.

(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

三、解不等式

1.解不等式問題的分類

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化為一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數(shù)不等式;

⑤解對數(shù)不等式;

⑥解帶絕對值的不等式;

⑦解不等式組.

2.解不等式時應(yīng)特別注意下列幾點:

(1)正確應(yīng)用不等式的基本性質(zhì).

(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.

(3)注意代數(shù)式中未知數(shù)的取值范圍.

3.不等式的同解性

高二數(shù)學(xué)知識的重點要點的總結(jié)2

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關(guān)系:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準(zhǔn)線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

5、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).

2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

3、模的計算:|a|=.算??梢韵人阆蛄康钠椒?/p>

4、向量的運(yùn)算過程中完全平方公式等照樣適用:

三、直線、平面、簡單幾何體:

1、學(xué)會三視圖的分析:

2、斜二測畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

⑷球體:①表面積:S=;②體積:V=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

高二數(shù)學(xué)知識的重點要點的總結(jié)3

數(shù)列

一、基本概念:

1、數(shù)列的定義及表示方法:

2、數(shù)列的項與項數(shù):

3、有窮數(shù)列與無窮數(shù)列:

4、遞增(減)、擺動、循環(huán)數(shù)列:

5、數(shù)列的通項公式an:

6、數(shù)列的前n項和公式Sn:

7、等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):

8、等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):

二、基本公式:

9、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=

10、等差數(shù)列的通項公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1為首項、ak為已知的第k項)當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。

11、等差數(shù)列的前n項和公式:Sn=Sn=Sn=

當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。

12、等比數(shù)列的通項公式:an=a1qn-1an=akqn-k

(其中a1為首項、ak為已知的第k項,an≠0)

13、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=na1(是關(guān)于n的正比例式);

當(dāng)q≠1時,Sn=Sn=

三、有關(guān)等差、等比數(shù)列的結(jié)論

14、等差數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等差數(shù)列。

15、等差數(shù)列中,若m+n=p+q,則

16、等比數(shù)列中,若m+n=p+q,則

17、等比數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等比數(shù)列。

18、兩個等差數(shù)列與的和差的數(shù)列、仍為等差數(shù)列。

19、兩個等比數(shù)列與的積、商、倒數(shù)組成的數(shù)列

、、仍為等比數(shù)列。

20、等差數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。

21、等比數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。

22、三個數(shù)成等差的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

23、三個數(shù)成等比的設(shè)法:a/q,a,aq;

四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3

24、為等差數(shù)列,則(c>0)是等比數(shù)列。

25、(bn>0)是等比數(shù)列,則(c>0且c1)是等差數(shù)列。

四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。

26、分組法求數(shù)列的和:如an=2n+3n

27、錯位相減法求和:如an=(2n-1)2n

28、裂項法求和:如an=1/n(n+1)

29、倒序相加法求和:

30、求數(shù)列的、最小項的方法:

①an+1-an=……如an=-2n2+29n-3

②an=f(n)研究函數(shù)f(n)的增減性

31、在等差數(shù)列中,有關(guān)Sn的最值問題--常用鄰項變號法求解:

(1)當(dāng)>0,d<0時,滿足的項數(shù)m使得取值.

(2)當(dāng)<0,d>0時,滿足的項數(shù)m使得取最小值。

在解含絕對值的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應(yīng)用。

高二數(shù)學(xué)知識的重點要點的總結(jié)相關(guān)文章

高二數(shù)學(xué)知識點總結(jié)

高二數(shù)學(xué)知識點新總結(jié)2020

高二數(shù)學(xué)知識點2020總結(jié)

高二數(shù)學(xué)知識點歸納總結(jié)

高二數(shù)學(xué)考點知識點總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識點總結(jié)歸納

高二數(shù)學(xué)必背知識點總結(jié)

高二數(shù)學(xué)知識點總結(jié)人教版

高二數(shù)學(xué)知識點總結(jié)詳細(xì)

高二數(shù)學(xué)知識點總結(jié)(人教版)

1071306