最新2023高考數(shù)學(xué)必背知識點歸納
最新2023高考數(shù)學(xué)必背知識點歸納(一覽)
高考正在緊張的復(fù)習(xí)中,不要慌做好各科知識點的歸納。那高考數(shù)學(xué)知識點有哪些呢?我們該怎么復(fù)習(xí)呢?以下是小編整理的一些最新2023高考數(shù)學(xué)必背知識點歸納,歡迎閱讀參考。
高考數(shù)學(xué)知識點總結(jié)
一、集合與函數(shù)
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。
2.在應(yīng)用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關(guān)問題嗎?
4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別。
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱。
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域。
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負)和導(dǎo)數(shù)法
11. 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?
①比較函數(shù)值的大小;
②解抽象函數(shù)不等式;
③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
二、不等式
1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
2.絕對值不等式的解法及其幾何意義是什么?
3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
4.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
5. 在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。
6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a
三、數(shù)列
1.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。
3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
4.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。
四、三角函數(shù)
1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
3. 在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)
5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是
6.你還記得某些特殊角的三角函數(shù)值嗎?
7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
五、平面向量
1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
2..數(shù)量積與兩個實數(shù)乘積的區(qū)別:
在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。
已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有。
在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。
3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六、解析幾何
1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
4. 定比分點的坐標(biāo)公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
5. 對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時,直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。
7.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。
①設(shè)出變量,寫出目標(biāo)函數(shù)
②寫出線性約束條件
③畫出可行域
④作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解
8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?
11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結(jié)論?)
12. 在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?
七、立體幾何
1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見
4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。
5.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
6.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。
7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?
8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">
直線與平面所成的角的范圍:0o≤α≤90°
高考數(shù)學(xué)的知識點歸納
一、簡單的邏輯聯(lián)結(jié)詞
1.用聯(lián)結(jié)詞且聯(lián)結(jié)命題p和命題q,記作pq,讀作p且q.
2.用聯(lián)結(jié)詞或聯(lián)結(jié)命題p和命題q,記作pq,讀作p或q.
3.對一個命題p全盤否定,就得到一個新命題,記作綈p,讀作非p或p的否定.
4.命題pq,pq,綈p的真假判斷:
pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.
二、全稱量詞與存在量詞
1.全稱量詞與全稱命題
(1)短語所有的任意一個在邏輯中通常叫做全稱量詞,并用符號表示.
(2)含有全稱量詞的命題,叫做全稱命題.
(3)全稱命題對M中任意一個x,有p(x)成立可用符號簡記為xM,p(x),讀作對任意x屬于M,有p(x)成立.
2.存在量詞與特稱命題
(1)短語存在一個至少有一個在邏輯中通常叫做存在量詞,并用符號表示.
(2)含有存在量詞的命題,叫做特稱命題.
(3)特稱命題存在M中的一個x0,使p(x0)成立可用符號簡記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.
三、含有一個量詞的命題的否定
四、解題思路
1.邏輯聯(lián)結(jié)詞與集合的關(guān)系
或、且、非三個邏輯聯(lián)結(jié)詞,對應(yīng)著集合運算中的并、交、補,因此,常常借助集合的并、交、補的意義來解答由或、且、非三個聯(lián)結(jié)詞構(gòu)成的命題問題.
2.正確區(qū)別命題的否定與否命題
否命題是對原命題若p,則q的條件和結(jié)論分別加以否定而得到的命題,它既否定其條件,又否定其結(jié)論;命題的否定即非p,只是否定命題p的結(jié)論. 命題的否定與原命題的真假總是對立的,即兩者中有且只有一個為真,而原命題與否命題的真假無必然聯(lián)系.
3.全稱命題真假的判斷方法
(1)要判斷一個全稱命題是真命題,必須對限定的集合M中的每一個元素x,證明p(x)成立;
(2)要判斷一個全稱命題是假命題,只要能舉出集合M中的一個特殊值x=x0,使p(x0)不成立即可.
4.特稱命題真假的判斷方法
要判斷一個特稱命題是真命題,只要在限定的集合M中,找到一個x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.
數(shù)學(xué)高考知識點精選總結(jié)
①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.
⑶特殊棱錐的頂點在底面的射影位置:
①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
②棱錐的`側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
⑧每個四面體都有內(nèi)切球,球心
是四面體各個二面角的平分面的交點,到各面的距離等于半徑.
[注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)
ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.
簡證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知則.
iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.
iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.
簡證:取AC中點,則平面90°易知EFGH為平行四邊形
EFGH為長方形.若對角線等,則為正方形.
數(shù)學(xué)高考知識點精選總結(jié)5篇4
一個推導(dǎo)
利用錯位相減法推導(dǎo)等比數(shù)列的前n項和:
Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
兩個防范
(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.
(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.
三種方法
等比數(shù)列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_,則{an}是等比數(shù)列.
(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_,則數(shù)列{an}是等比數(shù)列.
(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_,則{an}是等比數(shù)列.
注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.